10 resultados para Exceptional
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
The existence of a small partition of a combinatorial structure into random-like subparts, a so-called regular partition, has proven to be very useful in the study of extremal problems, and has deep algorithmic consequences. The main result in this direction is the Szemeredi Regularity Lemma in graph theory. In this note, we are concerned with regularity in permutations: we show that every permutation of a sufficiently large set has a regular partition into a small number of intervals. This refines the partition given by Cooper (2006) [10], which required an additional non-interval exceptional class. We also introduce a distance between permutations that plays an important role in the study of convergence of a permutation sequence. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
The exceptional advance of information technology and computer application to the mineral sector has allowed the automation of several processes of the mineral value chain. ERP systems (Enterprise Resource Planning) provided the platform for the efficient integration of all support activities of the mineral value chain. Despite all advances gathered with the application of computers, it was not possible to date, to effectively integrate the primary activities of the mineral value chain. The main reason for that are the uncertainties present in the productive process, which are intrinsic to the business, and the difficulty to quantify and qualify the benefits obtained with this integration due to the lack of a clear definition of the key performance indicators (KPIs). This work presents an analysis of the ERP systems application in Brazilian mining, identifies the KPIs of some of the most important Brazilian mining companies, and discusses the importance of mapping and measuring these indicators for the effective. management of the mining business.
Resumo:
It is thought that speciation in phytophagous insects is often due to colonization of novel host plants, because radiations of plant and insect lineages are typically asynchronous. Recent phylogenetic comparisons have supported this model of diversification for both insect herbivores and specialized pollinators. An exceptional case where contemporaneous plant-insect diversification might be expected is the obligate mutualism between fig trees (Ficus species, Moraceae) and their pollinating wasps (Agaonidae, Hymenoptera). The ubiquity and ecological significance of this mutualism in tropical and subtropical ecosystems has long intrigued biologists, but the systematic challenge posed by >750 interacting species pairs has hindered progress toward understanding its evolutionary history. In particular, taxon sampling and analytical tools have been insufficient for large-scale cophylogenetic analyses. Here, we sampled nearly 200 interacting pairs of fig and wasp species from across the globe. Two supermatrices were assembled: on an average, wasps had sequences from 77% of 6 genes (5.6 kb), figs had sequences from 60% of 5 genes (5.5 kb), and overall 850 new DNA sequences were generated for this study. We also developed a new analytical tool, Jane 2, for event-based phylogenetic reconciliation analysis of very large data sets. Separate Bayesian phylogenetic analyses for figs and fig wasps under relaxed molecular clock assumptions indicate Cretaceous diversification of crown groups and contemporaneous divergence for nearly half of all fig and pollinator lineages. Event-based cophylogenetic analyses further support the codiversification hypothesis. Biogeographic analyses indicate that the present-day distribution of fig and pollinator lineages is consistent with a Eurasian origin and subsequent dispersal, rather than with Gondwanan vicariance. Overall, our findings indicate that the fig-pollinator mutualism represents an extreme case among plant-insect interactions of coordinated dispersal and long-term codiversification.
Resumo:
The rainforest of Mexico has been degraded and severely fragmented, and urgently require restoration. However, the practice of restoration has been limited by the lack of species-specific data on survival and growth responses to local environmental variation. This study explores the differential performance of 14 wet tropical early-, mid- or late-successional tree species that were grown in two abandoned pastures with contrasting land-use histories. After 18 months, seedling survival and growth of at least 7 of the 14 tree species studied were significantly higher in the site with a much longer history of land use (site 2). Saplings of the three early-successional species showed exceptional growth rates. However, differences in performance were noted in relation to the differential soil properties between the experimental sites. Mid-successional species generally showed slow growth rates but high seedling survival, whereas late-successional species exhibited poor seedling survival at both the study sites. Stepwise linear regressions revealed that the species integrated response index combining survivorship and growth measurements, was influenced mostly by differences in soil pH between the two abandoned pastures. Our results suggest that local environmental variation among abandoned pastures of contrasting land-use histories influences sapling survival and growth. Furthermore, the similarity of responses among species with the same successional status allowed us to make some preliminary site and species-specific silvicultural recommendations. Future field experiments should extend the number of species and the range of environmental conditions to identify site generalists or more narrowly adapted species, that we would call sensitive.
Resumo:
Ionizing radiation is the most recognized risk factor for meningioma in pediatric long-term cancer survivors. Information in this rare setting is exceptional. We report the clinical and cytogenetic findings in a radiation-induced atypical meningioma following treatment for desmoplastic medulloblastoma in a child. This is the second study to describe the cytogenetic aspects on radiation-induced meningiomas in children. Chromosome banding analysis revealed a 46, XX, t(1;3)(p22;q12), del(1)(p?)[8]/46, XX[12]. Loss of chromosome 1p as a consequence of irradiation has been proposed to be more important in the development of secondary meningiomas in adults. Deletions in the short arm of chromosome 1 also appear to be a shared feature in both pediatric cases so far analyzed.
Resumo:
We report the synthesis of silver-gold nanotubes containing hot spots along their surface. The Ag-Au nanotubes exhibited exceptional SERS properties compared to silver nanowires, enabling the detection of crystal violet in the 10(-10) M regime, as well as 9-nitroanthracene and benzo[a] pyrene at 3.3 x 10(-7) M.
Resumo:
Considerable effort has been made in recent years to optimize materials properties for magnetic hyperthermia applications. However, due to the complexity of the problem, several aspects pertaining to the combined influence of the different parameters involved still remain unclear. In this paper, we discuss in detail the role of the magnetic anisotropy on the specific absorption rate of cobalt-ferrite nanoparticles with diameters ranging from 3 to 14 nm. The structural characterization was carried out using x-ray diffraction and Rietveld analysis and all relevant magnetic parameters were extracted from vibrating sample magnetometry. Hyperthermia investigations were performed at 500 kHz with a sinusoidal magnetic field amplitude of up to 68 Oe. The specific absorption rate was investigated as a function of the coercive field, saturation magnetization, particle size, and magnetic anisotropy. The experimental results were also compared with theoretical predictions from the linear response theory and dynamic hysteresis simulations, where exceptional agreement was found in both cases. Our results show that the specific absorption rate has a narrow and pronounced maxima for intermediate anisotropy values. This not only highlights the importance of this parameter but also shows that in order to obtain optimum efficiency in hyperthermia applications, it is necessary to carefully tailor the materials properties during the synthesis process. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4729271]
Resumo:
Reflecting their exceptional radiation, snakes occur in different habitats and microhabitats and are able to eat numerous types of prey. The availability of good and comprehensive phylogenies for different snake’s lineages together with natural history data provides an opportunity to explore how ecological traits diversified during their radiation. In the present study, we describe the diet and microhabitat variation (arboreal or non-arboreal) in the tribe Pseudoboini and explore how these traits evolved during the tribe’s diversification. We analyzed specimens deposited in scientific collections and gathered information on diet and microhabitat use available in the literature and provided by other researchers. We also mapped diet and microhabitat data onto a phylogeny of the tribe using the principle of parsimony. Pseudoboine snakes feed mainly on lizards and small mammals, and of the 22 species for which a minimum number of prey records was obtained, nine are diet generalists, six are lizard specialists, three are small mammal specialists, two are snake specialists, one is a lizard egg specialist, and one is a bird egg specialist. The highly diverse feeding habits of pseudoboines seem to have evolved mainly in the terminal taxa. Among those species that had enough microhabitat data (17 species), Drepanoides anomalus, Siphlophis cervinus, S. compressus, and S. pulcher frequently use the vegetation. Our results indicate that an increase in arboreality evolved several times during the diversification of the tribe, and that the Siphlophis clade seems to have maintained the high degree of arboreality from its ancestor. Species that frequently use vegetation are either lizard or lizard egg specialists, indicating that these habits might be associated in the evolution of pseudoboines.
Resumo:
The University of São Paulo celebrates its Integrated Library System 30th anniversary with an exhibition, discussing the problems of retrieval, preservation and access to knowledge resulting from the exceptional changes ICTs produce in contemporary society. It opens up discussions on the main function of the ancient library institution, reinforces its relevance and reflects on technical tools and social practices that make information and basic raw material accessible, generating new forms of knowledge. About the future library, it´s a call for reflection on how the brilliant minds of the past projected into the future, which for us are the achievements of the present. The future has already started and expects each one to exercise inventiveness and determination to build it in a human and collaborative sense.
Resumo:
Graphene has received great attention due to its exceptional properties, which include corners with zero effective mass, extremely large mobilities, this could render it the new template for the next generation of electronic devices. Furthermore it has weak spin orbit interaction because of the low atomic number of carbon atom in turn results in long spin coherence lengths. Therefore, graphene is also a promising material for future applications in spintronic devices - the use of electronic spin degrees of freedom instead of the electron charge. Graphene can be engineered to form a number of different structures. In particular, by appropriately cutting it one can obtain 1-D system -with only a few nanometers in width - known as graphene nanoribbon, which strongly owe their properties to the width of the ribbons and to the atomic structure along the edges. Those GNR-based systems have been shown to have great potential applications specially as connectors for integrated circuits. Impurities and defects might play an important role to the coherence of these systems. In particular, the presence of transition metal atoms can lead to significant spin-flip processes of conduction electrons. Understanding this effect is of utmost importance for spintronics applied design. In this work, we focus on electronic transport properties of armchair graphene nanoribbons with adsorbed transition metal atoms as impurities and taking into account the spin-orbit effect. Our calculations were performed using a combination of density functional theory and non-equilibrium Greens functions. Also, employing a recursive method we consider a large number of impurities randomly distributed along the nanoribbon in order to infer, for different concentrations of defects, the spin-coherence length.