29 resultados para Er3 ions
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Gold plasmonic lenses consisting of a planar concentric rings-groove with different periods were milled with a focused gallium ion beam on a gold thin film deposited onto an Er3+-doped tellurite glass. The plasmonic lenses were vertically illuminated with an argon ion laser highly focused by means of a 50x objective lens. The focusing mechanism of the plasmonic lenses is explained using a coherent interference model of surface plasmon-polariton (SPP) generation on the circular grating due to the incident field. As a result, phase modulation can be accomplished by the groove gap, similar to a nanoslit array with different widths. This focusing allows a high confinement of SPPs that can excite the Er3+ ions of the glass. The Er3+ luminescence spectra were measured in the far-field (500-750 nm wavelength range), where we could verify the excitation yield via the plasmonic lens on the Er3+ ions. We analyze the influence of the geometrical parameters on the luminescence spectra. The variation of these parameters results in considerable changes of the luminescence spectra.
Resumo:
This work reports on the construction and spectroscopic analyses of optical micro-cavities (OMCs) that efficiently emit at ~1535 nm. The emission wavelength matches the third transmission window of commercial optical fibers and the OMCs were entirely based on silicon. The sputtering deposition method was adopted in the preparation of the OMCs, which comprised two Bragg reflectors and one spacer layer made of either Er- or ErYb-doped amorphous silicon nitride. The luminescence signal extracted from the OMCs originated from the 4I13/2→4I15/2 transition (due to Er3+ ions) and its intensity showed to be highly dependent on the presence of Yb3+ ions.According to the results, the Er3+-related light emission was improved by a factor of 48 when combined with Yb3+ ions and inserted in the spacer layer of the OMC. The results also showed the effectiveness of the present experimental approach in producing Si-based light-emitting structures in which the main characteristics are: (a) compatibility with the actual microelectronics industry, (b) the deposition of optical quality layers with accurate composition control, and (c) no need of uncommon elements-compounds nor extensive thermal treatments. Along with the fundamental characteristics of the OMCs, this work also discusses the impact of the Er3+-Yb3+ ion interaction on the emission intensity as well as the potential of the present findings.
Resumo:
Optical and structural properties of planar and channel waveguides based on sol gel Er3+ and Yb3+ co-doped SiO2-ZrO2 are reported. Microstructured channels with high homogeneous surface profile were written onto the surface of multilayered densified films deposited on SiO2/Si substrates by a femtosecond laser etching technique. The densification of the planar waveguides was evaluated from changes in the refractive index and thickness, with full densification being achieved at 900 degrees C after annealing from 23 up to 500 min, depending on the ZrO2 content Crystal nucleation and growth took place together with densification, thereby producing transparent glass ceramic planar waveguides containing rare earth-doped ZrO2 nanocrystals dispersed in a silica-based glassy host Low roughness and crack-free surface as well as high confinement coefficient were achieved for all the compositions. Enhanced NIR luminescence of the Er3+ ions was observed for the Yb3+- codoped planar waveguides, denoting an efficient energy transfer from the Yb3+ to the Er3+ ion. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
We report a systematic study of the localized surface plasmon resonance effects on the photoluminescence of Er3+-doped tellurite glasses containing Silver or Gold nanoparticles. The Silver and Gold nanoparticles are obtained by means of reduction of Ag ions (Ag+ -> Ag-0) or Au ions (Au3+ -> Au-0) during the melting process followed by the formation of nanoparticles by heat treatment of the glasses. Absorption and photoluminescence spectra reveal particular features of the interaction between the metallic nanoparticles and Er3+ ions. The photoluminescence enhancement observed is due to dipole coupling of Silver nanoparticles with the I-4(13/2) -> I-4(15/2) Er3+ transition and Gold nanoparticles with the H-2(11/2)-> I-4(13/2) (805 nm) and S-4(3/2) -> I-4(13/2) (840 nm) Er3+ transitions. Such process is achieved via an efficient coupling yielding an energy transfer from the nanoparticles to the Er3+ ions, which is confirmed from the theoretical spectra calculated through the decay rate. Crown Copyright (C) 2011 Published by Elsevier B.V. All rights reserved.
Resumo:
We report the first observation of photoluminescence enhancement in Er3+ doped GeO2-Bi2O3 glasses containing silicon nanocrystals (Si-NCs) excited by a laser operating at 980 nm. The growth of approximate to 200% in the intensity of the Er3+ transition S-4(3/2) -> I-4(15/2) (545 nm) and of approximate to 100% for transitions H-2(11/2) -> I-4(15/2) (525 nm), F-4(9/2) -> I-4(15/2) (660 nm), and I-4(5/2) -> I-4(13/2) (1530 nm) was observed in comparison with a reference sample that does not contain Si-NCs. The results open a new road for obtaining efficient Stokes and anti-Stokes emissions in germanate composites doped with rare-earth ions.
Resumo:
This work reports on the infrared-to-visible CW frequency upconversion from planar waveguides based on Er3+-Yb3+-doped 100-xSiO(2)-xTa(2)O(5) obtained by a sol-gel process and deposited onto a SiO2-Si substrate by dip-coating. Surface morphology and optical parameters of the planar waveguides were analyzed by atomic force microscopy and the m-line technique. The influence of the composition on the electronic properties of the glass-ceramic films was followed by the band gap ranging from 4.35 to 4.51 eV upon modification of the Ta2O5 content. Intense green and red emissions were detected from the upconversion process for all the samples after excitation at 980 nm. The relative intensities of the emission bands around 550 nm and 665 nm, assigned to the H-2(11/2) -> I-4(15/2), S-4(3/2) -> I-4(15/2), and F-4(9/2) -> I-4(15/2) transitions, depended on the tantalum oxide content and the power of the laser source at 980 nm. The upconversion dynamics were investigated as a function of the Ta2O5 content and the number of photons involved in each emission process. Based on the upconversion emission spectra and 1931CIE chromaticity diagram, it is shown that color can be tailored by composition and pump power. The glass ceramic films are attractive materials for application in upconversion lasers and near infrared-to-visible upconverters in solar cells.
Resumo:
Local structure around Fe ions on Pb(Fe1/2Nb1/2)O-3 ceramics was probed by x-ray absorption spectroscopy in order to settle the controversies about its structure. It is observed that the shell structure around Fe atoms exhibits a monoclinic local symmetry at 130 and 230 K, tetragonal local symmetry at room temperature, and cubic local symmetry at 410 K. Independently of the coordination, temperature, or symmetry, Fe-O mean bond-length does not vary significantly. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4709490]
Resumo:
The addition of Cu2+ ions to the classical Fenton reaction (Fe2+ plus H2O2 at pH 3) is found to accelerate the degradation of organic compounds. This synergic effect causes an approximately 15 % additional reduction of the total organic carbon (TOC), representing an overall improvement of the efficiency of the mineralization of phenol. Although Fe2+ exhibits a high initial rate of degradation, the degradation is not complete due to the formation of compounds refractory to the hydroxyl radical. The interference of copper ions on the degradation of phenol by the Fenton reaction was investigated. In the presence of Cu2+, the degradation is slower, but results in a greater reduction of TOC at the end of the reaction (t = 120 min). In the final stages of the reaction, when the Fe3+ in the solution is complexed in the form of ferrioxalate, the copper ions assume the role of the main catalyst of the degradation.
Resumo:
Corrosion is a relevant issue regarding the problem of biodiesel compatibility with polymers and metals. This work aims to evaluate the influence of the natural light incidence and temperature in the corrosion rate of brass and copper immersed in commercial biodiesel as well as biodiesel degradation after the contact with metallic ions. The characterization of corrosion behavior was performed by weight loss measurements according to ASTM G1 and ASTM G31. The experiments according to ASTM G1 were performed at room temperature in light presence and absence. Experiments were also conducted at 55 degrees C in order to compare with ASTM G31 that is also performed at that temperature. The biodiesel degradation was characterized by water content, oxidation stability, viscosity as well as XRF, IR and Raman spectroscopies. The results of ASTM G1 tests showed that the thickness loss for both metals determined at room temperature is slightly higher when there is light incidence and these values significantly decrease for the highest temperature. The results of ASTM G31 tests indicated that air bubbling along with higher temperature affects mostly immersed samples. Biodiesel in contact with metals shows significant degradation in its properties as evidenced by increasing water content, higher viscosity and lower oxidation stability. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Bi3.25La0.75-xErxTi3O12 and Bi3.25La0.75Ti3-xErxO12-delta ceramics were prepared and studied in this work in terms of dopant-induced phase and microstructure development as well as dielectric response. The results show that introduction of Er3+ tends to reduce the materials' sintering temperature and average grain size. Moreover, it was noted that in these systems the substitution site of this dopant is controlled by valence state and ionic radii mismatch effects. In particular, even when a nominal substitution of Ti4+ is conceived, here it is found that Er3+ also incorporates at the (Bi,La)(3+) sites. These and other interesting concluding remarks from this work, including Er3+ tolerance, were possible only after comparing, especially, the X-ray diffraction results and the intrinsic ferroelectric characteristics extracted from the dielectric measurements. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
In this paper, we report on luminescence and absorbance effects of Er+3:Au-doped tellurite glasses synthesized by a melting-quenching and heat treatment technique. After annealing times of 2.5, 5.0, 7.5, and 10.0 h, at 300 A degrees C, the gold nanoparticles (GNP) effects on the Er+3 are verified from luminescence spectra and the corresponding levels lifetime. The localized surface plasmon resonance around 800 nm produced a maximum fluorescence enhancement for the band ranging from 800 to 840 nm, corresponding to the transitions H-4(11/2) -> aEuro parts per thousand I-4(13/2) (805 nm) and S-4(3/2) -> aEuro parts per thousand I-4(13/2) (840 nm), with annealing time till 7.5 h. The measured lifetime of the levels H-4(11/2) and S-4(3/2) confirmed the lifetime reduction due to the energy transfer from the GNP to Er+3, causing an enhanced photon emission rate in these levels.
Resumo:
Introduction: The aim of the present study was to evaluate the physicochemical properties of a bioceramic root canal sealer, Endosequence BC Sealer. Radiopacity, pH, release of calcium ions (Ca2+), and flow were analyzed, and the results were compared with AH Plus cement. Methods: Radiopacity and flow were evaluated according to ISO 6876/2001 standards. For the radiopacity analysis, metallic rings with 10-mm diameter and 1-mm thickness were filled with cements. The radiopacity value was determined according to radiographic density (mm Al). The flow test was performed with 0.05 mL of cement placed on a glass plate. A 120-g weight was carefully placed over the cement. The largest and smallest diameters of the disks formed were measured by using a digital caliper. The release of Ca2+ and pH were measured at periods of 3, 24, 72, 168, and 240 hours with spectrophotometer and pH meter, respectively. Data were analyzed by analysis of variance and Tukey test (P < .05). Results: The bioceramic endodontic cement showed radiopacity (3.84 mm Al) significantly lower than that of AH Plus (6.90 mm Al). The pH analysis showed that Endosequence BC Sealer showed pH and release of Ca2+ greater than those of AH Plus (P < .05) during the experimental periods. The flow test revealed that BC Sealer and AH Plus presented flow of 26.96 mm and 21.17 mm, respectively (P < .05). Conclusions: Endosequence BC Sealer showed radiopacity and flow according to ISO 6876/2001 recommendations. The other physicochemical properties analyzed demonstrated favorable values for a root canal sealer. (J Endod 2012;38:842-845)
Resumo:
A study of the interference of Zn2+ ions on phenol degradation by Fenton reaction (Fe2+/Fe3(+) + H2O2) is reported. One of the first intermediates formed in the reaction, catechol, can reduce Fe3+ to Fe2+ and, in the presence of H2O2 initiates an efficient catalytic redox cycle. In the initial stages of the reaction, this catechol-mediated cycle becomes the principal route of thermal degradation of phenol and its oxidation products. The Zn2+ ion addition enhances the persistence time of catechol, probably by stabilization of the corresponding semiquinone radical via complexation.
Resumo:
We have studied the influence of SiO2 content on the spectroscopic properties and laser emission efficiency of Yb3+-Er3+ co-doped calcium aluminosilicate glasses. An increase in SiO2 content resulted in higher phonon energy, which reduced the up-conversion emission, enhanced the energy transfer efficiency up to 70 % from Yb3+ to Er3+, and enhanced the optical quality. All these results led to an increase from 20 to 30 % in the laser emission efficiency.
Resumo:
The influence of silver nanoparticles (NPs) on the frequency upconversion luminescence in Er3+ doped TeO2-WO3-Bi2O3 glasses is reported. The effect of the NPs on the Er3+ luminescence was controlled by appropriate heat-treatment of the samples. Enhancement up to 700% was obtained for the upconverted emissions at 527, 550, and 660 nm, when a laser at 980 nm is used for excitation. Since the laser frequency is far from the NPs surface plasmon resonance frequency, the luminescence enhancement is attributed to the local field increase in the proximity of the NPs and not to energy transfer from the NPs to the emitters as is usually reported. This is the first time that the effect is investigated for tellurite-tungstate-bismutate glasses and the enhancement observed is the largest reported for a tellurium oxide based glass. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4754468]