15 resultados para Enzyme Inhibitors -- pharmacology
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Angiotensin-converting enzyme inhibitors (ACEi) may downregulate matrix metalloproteinases (MMPs). We examined whether enalapril affects MMP-2, MMP-8, and MMP-9 levels and activity, and their endogenous inhibitors (tissue inhibitors of MMPs, TIMP-1 and TIMP-2) levels in hypertensive patients. Moreover, we assessed the effects of enalaprilat on MMP-9 and TIMP-1 secretion by human endothelial cells (HUVECs). Thirty-eight hypertensive patients received enalapril for 8 weeks and were compared with thirty-eight normotensive controls. Blood samples were collected at baseline and after treatment. Plasma ACE activity was determined by a fluorimetric assay. Plasma MMP-2, MMP-8, MMP-9, TIMP-1, and TIMP-2 were measured by ELISA and gelatin zymography. A fluorogenic peptide cleavage assay was used to measure MMP activity. HUVECs cells were stimulated by phorbol-12-myristate-13-acetate (PMA) and the effects of enalaprilat (10(-10) to 10(-6) M) on MMP-9 and TIMP-1 levels were determined. Enalapril decreased blood pressure and ACE activity in hypertensive patients (P < 0.05), but had no effects on plasma MMP-2, MMP-8, MMP-9, TIMP-1, and TIMP-2 levels, or MMP activity. Enalaprilat had no effects on PMA-induced increases in MMP-9 and TIMP-1 secretion by HUVECs or on MMP activity. We show consistent evidence, both in vivo and in vitro, that enalapril does not affect MMPs and TIMPs levels in hypertensive patients.
Resumo:
This proof-of-concept study assessed whether the reduction of the degradation of the demineralized organic matrix (DOM) by pre-treatment with protease inhibitors (PI) is effective against dentin matrix loss. Bovine dentin slices were demineralized with 0.87 M citric acid, pH 2.3, for 36 hrs. In sequence, specimens were treated or not (UT, untreated) for 1 min with gels containing epigallocatechin 3-gallate (EGCG, 400 A mu M), chlorhexidine (CHX, 0.012%), FeSO4 (1 mM), NaF (1.23%), or no active compound (P, placebo). Specimens were then stored in artificial saliva (5 days, 37 degrees C) with the addition of collagenase (Clostridium histolyticum, 100 U/mL). We analyzed collagen degradation by assaying hydroxyproline (HYP) in the incubation solutions (n = 5) and evaluated the dentin matrix loss by profilometry (n = 12). Data were analyzed by ANOVA and Tukey's test (p < 0.05). Treatment with gels containing EGCG, CHX, or FeSO4 led to significantly lower HYP concentrations in solution and dentin matrix loss when compared with the other treatments. These results strongly suggest that the preventive effects of the PI tested against dentin erosion are due to their ability to reduce the degradation of the DOM.
Resumo:
Aims: Angiotensin-converting enzyme (ACE) inhibitors are used in diabetic kidney disease to reduce systemic/intra-glomerular pressure. The objective of this study was to investigate whether reducing blood pressure (BP) could modulate renal glucose transporter expression, and urinary markers of diabetic nephropathy in diabetic hypertensive rats treated with ramipril or amlodipine. Main methods: Diabetes was induced in spontaneously-hypertensive rats (~210 g) by streptozotocin (50 mg/kg). Thirty days later, animals received ramipril 15 μg/kg/day (R, n =10), or amlodipine 10 mg/kg/day (A, n= 8,) or water (C, n = 10) by gavage. After 30-day treatment, body weight, glycaemia, urinary albumin and TGF-β1 (enzyme-linked immunosorbent assay) and BP (tail-cuff pressure method) were evaluated. Kidneys were removed for evaluation of renal cortex glucose transporters (Western blotting) and renal tissue ACE activity (fluorometric assay). Key findings: After treatments, body weight (p = 0.77) and glycaemia (p = 0.22) were similar among the groups. Systolic BP was similarly reduced (p < 0.001) in A and R vs. C (172.4 ± 3.2; 186.7 ± 3.7 and 202.2 ± 4.3 mm Hg; respectively). ACE activity (C: 0.903 ± 0.086; A: 0.654 ± 0.025, and R: 0.389 ± 0.057 mU/mg), albuminuria (C: 264.8 ± 15.4; A: 140.8 ± 13.5 and R: 102.8 ± 6.7 mg/24 h), and renal cortex GLUT1 content (C: 46.81 ± 4.54; A: 40.30 ± 5.39 and R: 26.89 ± 0.79 AU) decreased only in R (p < 0.001, p < 0.05 and p < 0.001; respectively). Significance:We concluded that the blockade of the renin–angiotensin systemwith ramipril reduced earlymarkers of diabetic nephropathy, a phenomenon that cannot be specifically related to decreased BP levels.
Resumo:
Some mechanisms have been proposed to explain the role of bradykinin on glucose homeostasis and some studies reported that the BDKRB2 +9/-9 polymorphism was associated to the transcriptional activity of the receptor. In this scenario, the main aim of this study was to evaluate the association of the BDKRB2 +9/-9 polymorphism with diabetes mellitus risk in the Brazilian general population. This study included 1,032 subjects of the general urban population. Anthropometrical, blood pressure, biochemical, and genotype analyses for the BDKRB2 +9/-9 bp insertion/deletion polymorphism were performed. Individuals carrying +9/+9 or +9/-9 genotypes had higher glucose values (84.5 mg/dL versus 80.6 mg/dL, resp.) and higher frequency of diabetes mellitus (7.6% versus 3.6%, resp.) compared to individuals carrying -9/-9, adjusting for age and gender. In addition, higher diabetes mellitus risk was associated to presence of the +9/+9 or +9/-9 genotypes (OR = 1.91; 95% CI = 1.09-4.19; P = 0.03). Our data suggest that the BDKRB2 +9/-9 polymorphism may act as a genetic modulator of glucose homeostasis. It was previously associated to insulin sensitivity, glucose uptake, and insulin secretion, and, in this study, data suggest that the polymorphism may increase susceptibility to chronic metabolic conditions such as diabetes in the Brazilian population.
Resumo:
This work describes the atropisomeric relationships of 3-methyl-5-(3-methyl-5-phenyl-1H-pyrazol-1-yl)-1-phenyl-1H-pyrazol-4-amine (2d), which belongs to series 4-aminobipyrazole derivatives designed as anti-inflammatory agents. The 1H nuclear magnetic resonance spectra obtained in the presence of a chiral lanthanide shift salt associated to chiral high-performance liquid chromatography analysis, X-ray diffraction, and molecular modeling tools confirmed that ortho bis-functionalized bipyrazole 2d exists as a mixture of aR,aS-atropisomers. These results provide useful information to understand the pharmacological profile of this derivative and of other 4-aminobipyrazole analogs. Chirality 24:463470, 2012. (c) 2012 Wiley Periodicals, Inc.
Resumo:
Drug discovery has moved toward more rational strategies based on our increasing understanding of the fundamental principles of protein-ligand interactions. Structure( SBDD) and ligand-based drug design (LBDD) approaches bring together the most powerful concepts in modern chemistry and biology, linking medicinal chemistry with structural biology. The definition and assessment of both chemical and biological space have revitalized the importance of exploring the intrinsic complementary nature of experimental and computational methods in drug design. Major challenges in this field include the identification of promising hits and the development of high-quality leads for further development into clinical candidates. It becomes particularly important in the case of neglected tropical diseases (NTDs) that affect disproportionately poor people living in rural and remote regions worldwide, and for which there is an insufficient number of new chemical entities being evaluated owing to the lack of innovation and R&D investment by the pharmaceutical industry. This perspective paper outlines the utility and applications of SBDD and LBDD approaches for the identification and design of new small-molecule agents for NTDs.
Resumo:
Objective: Diastolic dysfunction (DD) is a frequent condition in hypertensive patients whose presence increases mortality and whose treatment remains unclear. The aim of this study was to investigate in a prospective, double-blinded, placebo-controlled randomized design the additive effect of simvastatin on DD in enalapril-treated hypertensive patients with average cholesterol levels. Methods: Hypertensive patients with DD and LDL-cholesterol <160 mg/dL underwent a run-in phase to achieve a systolic blood pressure (SBP) <135 mmHg and diastolic blood pressure (DBP) <85 mmHg with enalapril. Hydrochlorothiazide was added when need to achieve blood pressure control. Four weeks after reaching the optimum anti-hypertensive regimen patients were randomized to receive 80 mg simvastatin (n = 27) or placebo (n = 28) for a period of 20 weeks. Echocardiograms were performed before and after treatment with measurement of maximum left atrial volume (LAV), conventional and tissue Doppler velocities in early diastole (E, e') and late diastole (A, a'). Results: After 20 weeks, the simvastatin group presented reduction in SBP (-4 +/- 2 mmHg, p = 0.02), increase in E/A ratio (1.0 +/- 0.05 to 1.2 +/- 0.06, p = 0.03) and decrease of LAV indexed to body surface area (24.5 +/- 0.9 to 21.1 +/- 0.8 ml/m(2), p = 0.048), as compared with placebo arm. No change in systolic function and no correlation between the E/A ratio, LAV and changes in blood pressure or lipid profile were observed. Conclusions: The addition of simvastatin to enalapril in hypertensive patients with average cholesterol levels improves parameters of diastolic function independently of changes in blood pressure or cholesterol. (C) 2012 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Trypanothione reductase has long been investigated as a promising target for chemotherapeutic intervention in Chagas disease, since it is an enzyme of a unique metabolic pathway that is exclusively present in the pathogen but not in the human host, which has the analog Glutathione reductase. In spite of the present data-set includes a small number of compounds, a combined use of flexible docking, pharmacophore perception, ligand binding site prediction, and Grid-Independent Descriptors GRIND2-based 3D-Quantitative Structure-Activity Relationships (QSAR) procedures allowed us to rationalize the different biological activities of a series of 11 aryl beta-aminocarbonyl derivatives, which are inhibitors of Trypanosoma cruzi trypanothione reductase (TcTR). Three QSAR models were built and validated using different alignments, which are based on docking with the TcTR crystal structure, pharmacophore, and molecular interaction fields. The high statistical significance of the models thus obtained assures the robustness of this second generation of GRIND descriptors here used, which were able to detect the most important residues of such enzyme for binding the aryl beta-aminocarbonyl derivatives, besides to rationalize distances among them. Finally, a revised binding mode has been proposed for our inhibitors and independently supported by the different methodologies here used, allowing further optimization of the lead compounds with such combined structure- and ligand-based approaches in the fight against the Chagas disease.
Resumo:
As part of an ongoing research project on Senna and Cassia species, five new pyridine alkaloids, namely, 12'-hydroxy-7'-multijuguinol (1), 12'-hydroxy-8'-multijuguinol (2), methyl multijuguinate (3), 7'-multijuguinol (4), and 8'-multijuguinol (5), were isolated from the leaves of Senna multijuga (syn. Cassia multijuga). Their structures were elucidated on the basis of spectroscopic data analysis. Mass spectrometry was used for confirmation of the positions of the hydroxy groups in the side-chains of 1, 2, 4, and 5. All compounds exhibited weak in vitro acetylcholinesterase inhibitory activity as compared with the standard compound physostigmine.
Resumo:
Abnormal matrix metalloproteinase (MMP)-9 levels may have a role in hypertensive disorders of pregnancy. We examined whether MMP-9 genetic polymorphisms (g.-1562C>T and g.-90(CA)(13-25)) modify plasma MMP-9 and tissue inhibitor of metalloproteinase (TIMP)-1 levels and the responses to antihypertensive therapy in 214 patients with preeclampsia (PE), 185 patients with gestational hypertension (GH) and a control group of 214 healthy pregnant (HP). Alleles for the g.-90(CA)(13-25) polymorphism were grouped L (low) (<21 CA repeats) or H (high) (>= 21 CA repeats). Plasma MMP-9 and TIMP-1 concentrations were measured by enzyme-linked immunosorbent assay. Plasma MMP-9 concentrations were not affected by genotypes or haplotypes in HP and PE groups, except for the g.-90(CA)(13-25) polymorphism: GH patients with the LH genotype for this polymorphism have higher MMP-9 levels than those with other genotypes. The T allele for the g.-1562C>T polymorphism and the H4 haplotype (combining T and H alleles) are associated with GH and lack of responsiveness to antihypertensive therapy in GH. The H2 haplotype (combining C and H alleles) was associated with lack of responsiveness to antihypertensive therapy in PE, but not in GH. In conclusion, our results show that MMP-9 genetic variants are associated with GH and suggest that MMP-9 haplotypes affect the responsiveness to antihypertensive therapy in hypertensive disorders of pregnancy. The Pharmacogenomics Journal (2012) 12, 489-498; doi: 10.1038/tpj.2011.31; published online 19 July 2011
Resumo:
Erectile dysfunction (ED) may reflect vascular alterations associated with imbalanced matrix metalloproteinases (MMPs) activities. However, no previous study has compared MMPs levels in ED patients with those found in healthy subjects. We measured the circulating MMP-2, MMP-9, TIMP-1 and TIMP-2 levels in ED patients, with or without diabetes mellitus (DM), and in healthy controls. We studied 28 healthy men (control group), 35 men with ED (ED group), and 33 men with ED and DM (ED/DM group). MMP-2, MMP-9, TIMP-1 and TIMP-2 plasma levels were measured by enzyme-linked immunosorbent assay and zymography. We found no differences in MMP-9 levels (P>0.05) among groups. However, while patients in the ED group had similar TIMP-1 levels compared with those found in the control group, we found higher TIMP-1 levels and lower MMP-9/TIMP-1 ratios in the ED/DM group compared with controls (P<0.05). While both groups of patients (ED and ED/DM) had slightly lower MMP-2 levels compared with controls (P<0.05), we found no differences in TIMP-2 levels among the study groups (P>0.05), and no differences in MMP-2/TIMP-2 ratios (P>0.05). We found evidence indicating lack of significant alterations in circulating net MMP-9 and MMP-2 activities in patients with ED, and lower net MMP-9 activity in diabetic patients with ED. International Journal of Impotence Research (2012) 24, 38-43; doi:10.1038/ijir.2011.44; published online 15 September 2011
Resumo:
Aldolase has emerged as a promising molecular target for the treatment of human African trypanosomiasis. Over the last years, due to the increasing number of patients infected with Trypanosoma brucei, there is an urgent need for new drugs to treat this neglected disease. In the present study, two-dimensional fragment-based quantitative-structure activity relationship (QSAR) models were generated for a series of inhibitors of aldolase. Through the application of leave-one-out and leave-many-out cross-validation procedures, significant correlation coefficients were obtained (r(2) = 0.98 and q(2) = 0.77) as an indication of the statistical internal and external consistency of the models. The best model was employed to predict pK(i) values for a series of test set compounds, and the predicted values were in good agreement with the experimental results, showing the power of the model for untested compounds. Moreover, structure-based molecular modeling studies were performed to investigate the binding mode of the inhibitors in the active site of the parasitic target enzyme. The structural and QSAR results provided useful molecular information for the design of new aldolase inhibitors within this structural class.
Resumo:
p38 mitogen-activated protein kinase (p38 MAPK) is an important signal transducing enzyme involved in many cellular regulations, including signaling pathways, pain and inflammation. Several p38 MAPK inhibitors have been developed as drug candidates to treatment of autoimmune disorders, such as rheumatoid arthritis. In this paper we reported the docking, synthesis and pharmacological activity of novel urea-derivatives (4a-e) designed as p38 MAPK inhibitors. These derivatives presented good theoretical affinity to the target p38 MAPK, standing out compound 4e (LASSBio-998), which showed a better score value compared to the prototype GK-00687. This compound was able to reduce in vitro TNF-alpha production and was orally active in a hypernociceptive murine model sensible to p38 MAPK inhibitors. Otherwise, compound 4e presented a dose-dependent analgesic effect in a model of antigen (mBSA)-induced arthritis and anti-inflammatory profile in carrageenan induced paw edema, indicating its potential as a new antiarthritis prototype. (c) 2012 Elsevier Masson SAS. All rights reserved.
Resumo:
Human African trypanosomiasis, also known as sleeping sickness, is a major cause of death in Africa, and for which there are no safe and effective treatments available. The enzyme aldolase from Trypanosoma brucei is an attractive, validated target for drug development. A series of alkyl‑glycolamido and alkyl-monoglycolate derivatives was studied employing a combination of drug design approaches. Three-dimensional quantitative structure-activity relationships (3D QSAR) models were generated using the comparative molecular field analysis (CoMFA). Significant results were obtained for the best QSAR model (r2 = 0.95, non-cross-validated correlation coefficient, and q2 = 0.80, cross-validated correlation coefficient), indicating its predictive ability for untested compounds. The model was then used to predict values of the dependent variables (pKi) of an external test set,the predicted values were in good agreement with the experimental results. The integration of 3D QSAR, molecular docking and molecular dynamics simulations provided further insight into the structural basis for selective inhibition of the target enzyme.
Resumo:
Background: Sleeping sickness is a major cause of death in Africa. Since no secure treatment is available, the development of novel therapeutic agents is urgent. In this context, the enzyme trypanothione reductase (TR) is a prominent molecular target that has been investigated in drug design for sleeping sickness. Results: In this study, comparative molecular field analysis models were generated for a series of Trypanosoma brucei TR inhibitors. Statistically significant results were obtained and the models were applied to predict the activity of external test sets, with good correlation between predicted and experimental results. We have also investigated the structural requirements for the selective inhibition of the parasite's enzyme over the human glutathione reductase. Conclusion: The quantitative structure-activity relationship models provided valuable information regarding the essential molecular requirements for the inhibitory activity upon the target protein, providing important insights into the design of more potent and selective TR inhibitors.