8 resultados para Elevated highways.
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Several findings have pointed to the role of the dorsal periaqueductal gray (dPAG) serotonin 5-HT1A and 5-HT2(A-C) receptor subtypes in the modulation of defensive behavior in animals exposed to the elevated plus-maze (EPM). Besides displaying anxiety-like behavior, rodents also exhibit antinociception in the EPM. This study investigated the effects of intra-dPAG injections of 5-HT1A and 5-HT2B/2C receptor ligands on EPM-induced antinociception in mice. Male Swiss mice received 0.1 mu l intra-dPAG injections of vehicle, 5.6 and 10 nmol of 8-OHDPAT, a 5-HT1A receptor agonist (Experiment 1), or 0.01, 0.03 and 0.1 nmol of mCPP, a 5-HT2B/2C receptor agonist (Experiment 2). Five minutes later, each mouse received an intraperitoneal injection of 0.6% acetic acid (0.1 ml/10 g body weight; nociceptive stimulus) and was individually confined in the open (OA) or enclosed (EA) arms of the EPM for 5 min, during which the number of abdominal writhes induced by the acetic acid was recorded. While intra-dPAG injection of 8-OHDPAT did not change open-arm antinociception (OAR). mCPP (0.01 nmol) enhanced it. Combined injections of ketanserin (10 nmol/0.1 mu l), a 5-HT2A/2C receptor antagonist, and 0.01 nmol of mCPP (Experiment 3), selectively and completely blocked the OAR enhancement induced by mCPP. Although intra-dPAG injection of mCPP (0.01 nmol) also produced antinociception in EA-confined mice (Experiment 2), this effect was not confirmed in Experiment 3. Moreover, no other compound changed the nociceptive response in EA-confined animals. These results suggest that the 5-HT2C receptors located within the PAG play a role in this type of environmentally induced pain inhibition in mice. (c) 2012 Elsevier B.V. All rights reserved.
Resumo:
A comparative proteomic approach was performed to identify differentially expressed proteins in plastids at three stages of tomato (Solanum lycopersicum) fruit ripening (mature-green, breaker, red). Stringent curation and processing of the data from three independent replicates identified 1,932 proteins among which 1,529 were quantified by spectral counting. The quantification procedures have been subsequently validated by immunoblot analysis of six proteins representative of distinct metabolic or regulatory pathways. Among the main features of the chloroplast-to-chromoplast transition revealed by the study, chromoplastogenesis appears to be associated with major metabolic shifts: (1) strong decrease in abundance of proteins of light reactions (photosynthesis, Calvin cycle, photorespiration) and carbohydrate metabolism (starch synthesis/degradation), mostly between breaker and red stages and (2) increase in terpenoid biosynthesis (including carotenoids) and stress-response proteins (ascorbate-glutathione cycle, abiotic stress, redox, heat shock). These metabolic shifts are preceded by the accumulation of plastid-encoded acetyl Coenzyme A carboxylase D proteins accounting for the generation of a storage matrix that will accumulate carotenoids. Of particular note is the high abundance of proteins involved in providing energy and in metabolites import. Structural differentiation of the chromoplast is characterized by a sharp and continuous decrease of thylakoid proteins whereas envelope and stroma proteins remain remarkably stable. This is coincident with the disruption of the machinery for thylakoids and photosystem biogenesis (vesicular trafficking, provision of material for thylakoid biosynthesis, photosystems assembly) and the loss of the plastid division machinery. Altogether, the data provide new insights on the chromoplast differentiation process while enriching our knowledge of the plant plastid proteome.
Resumo:
The role of the amygdala in the mediation of fear and anxiety has been extensively investigated. However, how the amygdala functions during the organization of the anxiety-like behaviors generated in the elevated plus maze (EPM) is still under investigation. The basolateral (BLA) and the central (CeA) nuclei are the main input and output stations of the amygdala. In the present study, we ethopharmacologically analyzed the behavior of rats subjected to the EPM and the tissue content of the monoamines dopamine (DA) and serotonin (5-HT) and their metabolites in the nucleus accumbens (NAc), dorsal hippocampus (DH), and dorsal striatum (DS) of animals injected with saline or midazolam (20 and 30 nmol/0.2 mu L) into the BLA or CeA. Injections of midazolam into the CeA, but not BLA, caused clear anxiolytic-like effects in the EPM. These treatments did not cause significant changes in 5-HT or DA contents in the NAc, DH, or DS of animals tested in the EPM. The data suggest that the anxiolytic-like effects of midazolam in the EPM also appear to rely on GABA-benzodiazepine mechanisms in the CeA, but not BLA, and do not appear to depend on 5-HT and DA mechanisms prevalent in limbic structures.
Resumo:
The aim of this work was to determine the impact of three levels of [CO2] and two levels of soil-nutrient availability on the growth and physiological responses of two tropical tree species differing in their ecological group: Croton urucurana Baillon, a pioneer (P), and also Cariniana legalis (Martius) Kuntze, a late succession (LS). We aimed to test the hypothesis that P species have stronger response to elevated [CO2] than LS species as a result of differences in photosynthetic capacity and growth kinetics between both functional groups. Seedlings of both species were grown in open-top-chambers under high (HN) or low (LN) soil-nutrient supply and exposed to ambient (380 mu mol mol(-1)) or elevated (570 and 760 mu mol mol(-1)) [CO2]. Measurements of gas exchange, chlorophyll a fluorescence, seedling biomass and allocation were made after 70 days of treatment. Results suggest that elevated [CO2] significantly enhances the photosynthetic rates (A) and biomass production in the seedlings of both species, but that soil-nutrient supply has the potential to modify the response of young tropical trees to elevated [CO2]. In relation to plants grown in ambient [CO2], the P species grown under 760 mu mol mol(-1) [CO2] showed increases of 28% and 91% in A when grown in LN and HN, respectively. In P species grown under 570 mu mol mol(-1) [CO2], A increased by 16% under HN, but there was no effect in LN. In LS species, the enhancement of A by effect of 760 mu mol mol(-1) [CO2] was 30% and 70% in LN and HN, respectively. The exposure to 570 mu mol mol(-1) [CO2] stimulated A by 31% in HN, but was no effect in LN. Reductions in stomatal conductance (g(s)) and transpiration (E), as a result of elevated [CO2] were observed. Increasing the nutrient supply from low to high increased both the maximum rate of carboxylation (V-cmax) and maximum potential rate of electron transport (J(max)). As the level of [CO2] increased, both the V-cmax and the J(max) were found to decrease, whereas the J(max)/V-cmax ratio increased. In the LS species, the maximum efficiency of PSII (F-v/F-m) was higher in the 760 mu mol mol(-1) [CO2] treatment relative to other [CO2] treatments. The results suggest that when grown under HN and the highest [CO2], the performance of the P species C. urucurana, in terms of photosynthesis and biomass enhancement, is better than the LS species C. legalis. However, a larger biomass is allocated to roots when C. legalis seedlings were exposed to elevated [CO2]. This response would be an important strategy for plant survival and productivity of the LS species under drought stresses conditions on tropical environments in a global-change scenario. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Serotonin (5-HT), opioids and the dorsal periaqueductal grey (DPAG) have been implicated in the pathophysiology of panic disorder. In order to study 5-HT-opioid interaction, the opioid antagonist naloxone was injected either systemically (1 mg/kg, i.p.) or intra-DPAG (0.2 mu g/0.5 mu L) to assess its interference with the effect of chronic fluoxetine (10 mg/kg, i.p., daily for 21 days) or of intra-DPAG 5-HT (8 mu g/0.5 mu L). Drug effects were measured in the one-escape task of the rat elevated T-maze, an animal model of panic. Pretreatment with systemic naloxone antagonized the lengthening of escape latency caused by chronic fluoxetine, considered a panicolytic-like effect that parallels the drug's therapeutic response in the clinics. Pretreatment with naloxone injected intra-DPAG antagonized both the panicolytic effect of chronic fluoxetine as well as that of 5-HT injected intra-DPAG. Neither the performance of the inhibitory avoidance task in the elevated T-maze, a model of generalized anxiety nor locomotion measured in a circular arena was affected by the above drug treatments. These results indicate that the panicolytic effect of fluoxetine is mediated by endogenous opioids that are activated by 5-HT in the DPAG. They also allow reconciliation between the serotonergic and opioidergic hypotheses of panic disorder pathophysiology.
Resumo:
We would like to thank FAPESP for funding this work.
Resumo:
The escape response to electrical or chemical stimulation of the dorsal periaqueductal gray matter (DPAG) has been associated with panic attacks. In order to explore the validity of the DPAG stimulation model for the study of panic disorder, we determined if the aversive consequences of the electrical or chemical stimulation of this midbrain area can be detected subsequently in the elevated T-maze. This animal model, derived from the elevated plus-maze, permits the measurement in the same rat of a generalized anxiety- and a panic-related defensive response, i.e., inhibitory avoidance and escape, respectively. Facilitation of inhibitory avoidance, suggesting an anxiogenic effect, was detected in male Wistar rats (200-220 g) tested in the elevated T-maze 30 min after DPAG electrical stimulation (current generated by a sine-wave stimulator, frequency at 60 Hz) or after local microinjection of the GABA A receptor antagonist bicuculline (5 pmol). Previous electrical (5, 15, 30 min, or 24 h before testing) or chemical stimulation of this midbrain area did not affect escape performance in the elevated T-maze or locomotion in an open-field. No change in the two behavioral tasks measured by the elevated T-maze was observed after repetitive (3 trials) electrical stimulation of the DPAG. The results indicate that activation of the DPAG caused a short-lived, but selective, increase in defensive behaviors associated with generalized anxiety.
Resumo:
The objective of this study was to investigate the impact of elevated tissue omega-3 (n-3) polyunsaturated fatty acids (PUFA) status on age-related glucose intolerance utilizing the fat-1 transgenic mouse model, which can endogenously synthesize n-3 PUFA from omega-6 (n-6) PUFA. Fat-1 and wild-type mice, maintained on the same dietary regime of a 10% corn oil diet, were tested at two different ages (2months old and 8months old) for various glucose homeostasis parameters and related gene expression. The older wild-type mice exhibited significantly increased levels of blood insulin, fasting blood glucose, liver triglycerides, and glucose intolerance, compared to the younger mice, indicating an age-related impairment of glucose homeostasis. In contrast, these age-related changes in glucose metabolism were largely prevented in the older fat-1 mice. Compared to the older wild-type mice, the older fat-1 mice also displayed a lower capacity for gluconeogenesis, as measured by pyruvate tolerance testing (PTT) and hepatic gene expression of phosphoenolpyruvate carboxykinase (PEPCK) and glucose 6 phosphatase (G6Pase). Furthermore, the older fat-1 mice showed a significant decrease in body weight, epididymal fat mass, inflammatory activity (NFκ-B and p-IκB expression), and hepatic lipogenesis (acetyl-CoA carboxylase (ACC) and fatty acid synthase (FAS) expression), as well as increased peroxisomal activity (70-kDa peroxisomal membrane protein (PMP70) and acyl-CoA oxidase1 (ACOX1) expression). Altogether, the older fat-1 mice exhibit improved glucose homeostasis in comparison to the older wild-type mice. These findings support the beneficial effects of elevated tissue n-3 fatty acid status in the prevention and treatment of age-related chronic metabolic diseases