10 resultados para Electrochemical analysis

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Light-emitting electrochemical cells (LECs) made of electroluminescent polymers were studied by d.c. and transient current-voltage and luminance-voltage measurements to elucidate the operation mechanisms of this kind of device. The time and external voltage necessary to form electrical double layers (EDLs) at the electrode interfaces could be determined from the results. In the low-and intermediate-voltage ranges (below 1.1 V), the ionic transport and the electronic diffusion dominate the current, being the device operation better described by an electrodynamic model. For higher voltages, electrochemical doping occurs, giving rise to the formation of a p-i-n junction, according to an electrochemical doping model. Copyright (C) EPLA, 2012

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This article describes a new design for a paper-based electrochemical system for flow injection analysis. Capillary wicking facilitates a gravity-driven flow of buffer solution continuously through paper and nitrocellulose, from a buffer reservoir at one end of the device to a sink at the other. A difference in height between the reservoir and the sink leads to a continuous and constant flow. The nitrocellulose lies horizontally on a working electrode, which consists of a thin platinum layer deposited on a solid support. The counter and reference electrodes are strategically positioned upstream in the buffer reservoir. A simple pipetting device was developed for reliable application of (sub)microliter volumes of sample without the need of commercial micropipets; this device did not damage the nitrocellulose membrane. Demonstration of the system for the determination of the concentration of glucose in urine resulted in a noninvasive, quantitative assay that could be used for diagnosis and monitoring of diabetes. This method does not require disposable test strips, with enzyme and electrodes, that are thrown away after each measurement Because of its low cost, this system could be used in medical environments that are resource-limited.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The class of electrochemical oscillators characterized by a partially hidden negative differential resistance in an N-shaped current potential curve encompasses a myriad of experimental examples. We present a comprehensive methodological analysis of the oscillation frequency of this class of systems and discuss its dependence on electrical and kinetic parameters. The analysis is developed from a skeleton ordinary differential equation model, and an equation for the oscillation frequency is obtained. Simulations are carried out for a model system, namely, the nickel electrodissolution, and the numerical results are confirmed by experimental data on this system. In addition, the treatment is further applied to the electro-oxidation of ethylene glycol where unusually large oscillation frequencies have been reported. Despite the distinct chemistry underlying the oscillatory dynamics of these systems, a very good agreement between experiments and theoretical predictions is observed. The application of the developed theory is suggested as an important step for primary kinetic characterization.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Terbinafine hydrochloride (TerbHCl) is an allylamine derivative with fungicidal action, especially against dermatophytes. Different analytical methods have been reported for quantifying TerbHCl in different samples. These procedures require time-consuming sample preparation or expensive instrumentation. In this paper, electrochemical methods involving capillary electrophoresis with contactless conductivity detection, and amperometry associated with batch injection analysis, are described for the determination of TerbHCl in pharmaceutical products. In the capillary electrophoresis experiments, terbinafine was protonated and analyzed in the cationic form in less than 1 min. A linear range from 1.46 to 36.4 mu g mL(-1) in acetate buffer solution and a detection limit of 0.11 mu g mL(-1) were achieved. In the amperometric studies, terbinafine was oxidized at +0.85 V with high throughput (225 injection h(-1)) and good linear range (10-100 mu mol L-1). It was also possible to determine the antifungal agent using simultaneous conductometric and potentiometric titrations in the presence of 5% ethanol. The electrochemical methods were applied to the quantification of TerbHCl in different tablet samples; the results were comparable with values indicated by the manufacturer and those found using titrimetry according to the Pharmacopoeia. The electrochemical methods are simple, rapid and an appropriate alternative for quantifying this drug in real samples. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An easy way to determine norepinephrine (NE) in biological fluid using a platinum ultramicroelectrode array (Pt-UMEAs) is described. Issues related to UME electrode surface treatment and characterizations are also addressed. At optimized experimental conditions the dynamic concentration range was 1.0 to 10.0 mu mol?L-1 with a detection limit of 40.5 nmol?L-1. The repeatability of current responses for injections of 5 mu mol?L-1 NE was evaluated to be 4.0?% (n=10). This approach obtained excellent sensitivity, a reliable calibration profile and stable electrochemical response for norepinephrine detection. The content of NE in urine samples without any preconcentration, purification, or pretreatment step, was successfully analyzed by the standard addition method using the Pt-UMEAs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Frequency-dependent electroluminescence and electric current response spectroscopy were applied to polymeric light-emitting electrochemical cells in order to obtain information about the operation mechanism regimes of such devices. Three clearly distinct frequency regimes could be identified: a dielectric regime at high frequencies; an ionic transport regime, characterized by ionic drift and electronic diffusion; and an electrolytic regime, characterized by electronic injection from the electrodes and electrochemical doping of the conjugated polymer. From the analysis of the results, it was possible to evaluate parameters like the diffusion speed of electronic charge carriers in the active layer and the voltage drop necessary for operation. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4752438]

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Carbon-supported Pt-based electrocatalysts were synthesized by Pechini method for the ethanol oxidation (EOR). Physicochemical characterizations were helpful to estimate the diameters of the obtained materials ranging from 2 nm to 5 nm. Main electrochemical experiments were carried out at 90 degrees C i.e. under the working conditions of performing the single 5 cm(2) direct ethanol fuel cell (DEFC). Pt(80)Sn(20)/C was the anode catalyst which has given the highest power density of 37 mW cm(-2). Importantly, the IR spectroscopy measurements associated with the qualitative analysis done at the output of the anodic compartment of the fuel cell have shown that ethanol oxidation on Pt(80)Sn(20)/C was mainly a two-electron sustainable process. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new biomaterial, based on silica organofunctionalized with p-phenylenediamine (p-PDA) and the enzyme peroxidase, was used in the development of an enzymatic solid-phase reactor. The analytical techniques used in the characterization showed that the organic ligand was incorporated into the silica matrix. Thus, the silica modified with p-PDA allowed the incorporation of peroxidase by the electrostatic interaction between the carboxylic groups present in the enzyme molecules and the amino groups attached to the silica. The enzymatic solid-phase reactor was used for chemical oxidation of phenols in 1, 4-benzoquinone that was then detected by chronoamperometry. The system allowed the analysis of hydroquinone with a detection limit of 83.6 nmol L-1. Thus, the new material has potential in the determination of phenolic compounds river water samples.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A sensitive and fast-responding membrane-free amperometric gas sensor is described, consisting of a small filter paper foil soaked with a room temperature ionic liquid (RTIL), upon which three electrodes are screen printed with carbon ink, using a suitable mask. It takes advantage of the high electrical conductivity and negligible vapour pressure of RTILs as well as their easy immobilization into a porous and inexpensive supporting material such as paper. Moreover, thanks to a careful control of the preparation procedure, a very close contact between the RTIL and electrode material can be achieved so as to allow gaseous analytes to undergo charge transfer just as soon as they reach the three-phase sites where the electrode material, paper supported RTIL and gas phase meet. Thus, the adverse effect on recorded currents of slow steps such as analyte diffusion and dissolution in a solvent is avoided. To evaluate the performance of this device, it was used as a wall-jet amperometric detector for flow injection analysis of 1-butanethiol vapours, adopted as the model gaseous analyte, present in headspace samples in equilibrium with aqueous solutions at controlled concentrations. With this purpose, the RTIL soaked paper electrochemical detector (RTIL-PED) was assembled by using 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl) imide as the wicking RTIL and printing the working electrode with carbon ink doped with cobalt(II) phthalocyanine, to profit from its ability to electrocatalyze thiol oxidation. The results obtained were quite satisfactory (detection limit: 0.5 mu M; dynamic range: 2-200 mu M, both referring to solution concentrations; correlation coefficient: 0.998; repeatability: +/- 7% RSD; long-term stability: 9%), thus suggesting the possible use of this device for manifold applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The patination of copper is known for its complexity and heterogeneous formation. For a deeper investigation, a locally resolved surface analysis was considered. An exact determination of the accessed area and a potentiostatic control in a three-electrode configuration was reached with the use of the electrochemical microcell technique, which enables local electrochemical measurement such as local electrochemical impedance spectroscopy and cyclic voltammetry. Such a technique provides a unique way for performing the investigation of heterogeneities on electrode surfaces. The local electrochemical measurements on the artificially patinated surface have allowed distinguishing areas of different reactivity even when the analysis of the surface revealed a homogenous chemical composition of patina. Local measurements with the electrochemical microcell showed the presence of small defects on the patina layer that can be modelled by considering a hemispherical diffusion process at small active areas surrounded by larger less reactive domains.