2 resultados para EAG
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Electrophysiological responses based on electroantennographic detection (GC-EAD) and electroantennography (EAG) analysis of Naupactus bipes beetles (Germar, 1824) (Coleoptera: Curculionidae: Brachycerinae) were used to test volatile oils of Piper gaudichaudianum, P. regnellii and P. hispidum. In the EAG experiments, female and male beetles showed significant EAG response to the three volatile oils of Piper species, with the females' responses slightly higher than the males'. The experiments with GC-EAD revealed that some terpenoids (namely, alpha-pinene, beta-pinene, myrcene, alpha-copaene and germacrene) present in the leaf essential oils of the Piper species are perceptible to female and male beetles.
Resumo:
The ether A go-go (Eag) gene encodes the voltage-gated potassium (K+) ion channel Kv10.1, whose function still remains unknown. As dopamine may directly affect K+ channels, we evaluated whether a nigrostriatal dopaminergic lesion induced by the neurotoxin 6-hydroxydopamine (6-OHDA) would alter Eag1-K+ channel expression in the rat basal ganglia and related brain regions. Male Wistar rats received a microinjection of either saline or 6-OHDA (unilaterally) into the medial forebrain bundle. The extent of the dopaminergic lesion induced by 6-OHDA was evaluated by apomorphine-induced rotational behavior and by tyrosine hydroxylase (TH) immunoreactivity. The 6-OHDA microinjection caused a partial or complete lesion of dopaminergic cells, as well as a reduction of Eag1+ cells in a manner proportional to the extent of the lesion. In addition, we observed a decrease in TH immunoreactivity in the ipsilateral striatum. In conclusion, the expression of the Eag1-K+-channel throughout the nigrostriatal pathway in the rat brain, its co-localization with dopaminergic cells and its reduction mirroring the extent of the lesion highlight a physiological circuitry where the functional role of this channel can be investigated. The Eag1-K+ channel expression in dopaminergic cells suggests that these channels are part of the diversified group of ion channels that generate and maintain the electrophysiological activity pattern of dopaminergic midbrain neurons.