11 resultados para Droplet-vitrification
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
In gene-banking, primordial germ cells (PGCs), which are embryonic precursor cells of germ cells, are useful for cryopreservation because PGCs have a potential to differentiate into both eggs and sperm via germ-line chimera. Here, we have established vitrification methods for PGCs cryopreservation using 12- to 17-somite stage embryos in loach, Misgurnus anguillicaudatus, which were dechorionated, removed their yolk and injected with green fluorescent protein (GFP) -nos1 3'UTR mRNA to visualize their PGCs. In order to optimize cryopreservation medium for vitrification, the toxicity of cryoprotectants was analyzed. Different concentrations (2, 3, 4, 5 m) of dimethyl sulfoxide (DMSO), methanol (MeOH), ethylene glycol (EG) and propylene glycol (PG) as cryoprotectants were tested. Then, 5 m DMSO showed significantly-high toxicity. Based on this information, combinations called DMP (2 m (14.2% [v/v]) DMSO, 2 m (8.1% [v/v]) MeOH and 2 m (14.4% [v/v]) PG), DP (2 m (14.2% [v/v]) DMSO and 4 m (28.7% [v/v]) PG) and DE (2.1 m (15% [v/v]) DMSO and 2.7 m (15% [v/v]) EG) were evaluated for their toxicities and efficacy of PGCs cryopreservation using two types of equilibration step: direct immersion of cryopreservation media (one-step) and serial exposure to half and full concentration of cryopreservation media (two-step). Viable PGCs were obtained from post-thaw embryos which were cryopreserved by DP and DE with both 1- and 2-step equilibrations. Despite DP showing the highest toxicity, it gave the highest survival rate of embryonic cells after cryopreservation. When PGCs recovered from vitrified embryos were transplanted into host embryos at the blastula stage, the transplanted PGCs were able to migrate to a host genital ridge similarly as endogenous PGCs. It suggests that our methods could be useful to create a germ-line chimera for the production of gametes from PGCs of cryopreserved embryos.
Resumo:
The aim of this work was to evaluate the effect of cryopreservation protocols on subsequent development of in vitro produced bovine embryos under different culture conditions. Expanded in vitro produced blastocysts (n = 600) harvested on days 7-9 were submitted to controlled freezing [slow freezing group: 10% ethylene glycol (EG) for 10 min and 1.2 degrees C/min cryopreservation]; quick-freezing [rapid freezing group: 10% EG for 10 min, 20% EG + 20% glycerol (Gly) for 30 s]; or vitrification [vitrification group: 10% EG for 10 min, 25% EG + 25% Gly for 30 s] protocols. Control group embryos were not exposed to cryoprotectant or cryopreservation protocols and the hatching rate was evaluated on day 12 post-insemination. In order to evaluate development, frozen-thawed embryos were subjected to granulosa cell co-culture in TCM199 or SOFaa for 4 days. Data were analyzed by PROC MIXED model using SAS Systems for Windows (R). Values were significant at p < 0.05. The hatching rate of the control group was 46.09%. In embryos cultured in TCM199, slow freezing and vitrification group hatching rates were 44.65 +/- 5.94% and 9.43 +/- 6.77%, respectively. In embryos cultured in SOFaa, slow freezing and vitrification groups showed hatching rates of 11.65 +/- 3.37 and 8.67 +/- 4.47%, respectively. In contrast, the rapid freezing group embryos did not hatch, regardless of culture medium. The slow freezing group showed higher hatching rates than other cryopreservation groups. Under such conditions, controlled freezing (1.2 degrees C/min) can be an alternative to cryopreservation of in vitro produced bovine embryos.
Resumo:
The viscosity of AOT/water/decane water-in-oil microemulsions exhibits a well-known maximum as a function of water/AOT molar ratio, which is usually attributed to increased attractions among nearly spherical droplets. The maximum can be removed by adding salt or by changing the oil to CCl4. Systematic small-angle X-ray scattering (SAXS) measurements have been used to monitor the structure of the microemulsion droplets in the composition regime where the maximum appears. On increasing the droplet concentration, the scattering intensity is found to scale with the inverse of the wavevector, a behavior which is consistent with cylindrical structures. The inverse wavevector scaling is not observed when the molar ratio is changed, moving the system away from the value corresponding to the viscosity maximum. It is also not present in the scattering from systems containing enough added salt to essentially eliminate the viscosity maximum. An asymptotic analysis of the SAXS data, complemented by some quantitative modeling, is consistent with cylindrical growth of droplets as their concentration is increased. Such elongated structures are familiar from related AOT systems in which the sodium counterion has been exchanged for a divalent one. However, the results of this study suggest that the formation of non-spherical aggregates at low molar ratios is an intrinsic property of AOT.
Resumo:
The objectives were to evaluate the reexpansion blastocoele rate, post-thaw viability, and in vitro development of canine blastocysts cryopreserved by slow freezing in 1.0 m glycerol (GLY) or 1.5 m ethylene glycol (EG). Fifty-one in vivo-produced canine blastocysts were randomly allocated in two groups: GLY (n = 26) and EG (n = 25). After thawing, embryos from MO were immediately stained with the fluorescent probes propidium iodide and Hoechst 33 342 to evaluate cellular viability. Frozen-thawed embryos from M3 and M6 were cultured in SOFaa medium + 10% FCS at 38.5 degrees C under an atmosphere of 5% CO2 with maximum humidity, for 3 and 6 days, respectively, and similarly stained. The blastocoele reexpansion rate (24 h after in vitro culture) did not differ between GLY (76.5%) and EG (68.8%). Post-thaw viable cells rate were not significantly different between GLY and EG (66.5 +/- 4.8 and 57.3 +/- 4.8, respectively, mean +/- SEM), or among MO (62.3 +/- 5.7%), M3 (56.9 +/- 6.0%), and M6 (66.5 +/- 6.0%). In conclusion, canine blastocysts cryopreserved by slow freezing in 1.0 m glycerol or 1.5 m ethylene glycol, had satisfactory blastocoele reexpansion rates, similar post-thawing viability, and remained viable for up to 6 days of in vitro culture. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
A scheme is presented in which an organic solvent environment in combination with surfactants is used to confine a natively unfolded protein inside an inverse microemulsion droplet. This type of confinement allows a study that provides unique insight into the dynamic structure of an unfolded, flexible protein which is still solvated and thus under near-physiological conditions. In a model system, the protein osteopontin (OPN) is used. It is a highly phosphorylated glycoprotein that is expressed in a wide range of cells and tissues for which limited structural analysis exists due to the high degree of flexibility and large number of post-translational modifications. OPN is implicated in tissue functions, such as inflammation and mineralisation. It also has a key function in tumour metastasis and progression. Circular dichroism measurements show that confinement enhances the secondary structural features of the protein. Small-angle X-ray scattering and dynamic light scattering show that OPN changes from being a flexible protein in aqueous solution to adopting a less flexible and more compact structure inside the microemulsion droplets. This novel approach for confining proteins while they are still hydrated may aid in studying the structure of a wide range of natively unfolded proteins.
Resumo:
Babassu is considered one of the greatest native resources in the world and its oil is used in body and hair formulations. The aim of this study was to evaluate the short-term stability in oil-in-water (O/W) nanoemulsions containing babassu oil prepared by emulsification phase inversion submitted to the centrifugation, thermal stress, and heating/cooling cycle tests. The formulations showed no change compared to the droplet size, polydispersity index, pH, and electrical conductivity values after thermal stress and heating/cooling cycle tests. Based on these results, the nanoemulsions obtained can be considered as promising disperse systems for pharmaceutical and cosmetic applications.
Resumo:
This work evaluates the spatial distribution of normalised rates of droplet breakage and droplet coalescence in liquidliquid dispersions maintained in agitated tanks at operation conditions normally used to perform suspension polymerisation reactions. Particularly, simulations are performed with multiphase computational fluid dynamics (CFD) models to represent the flow field in liquidliquid styrene suspension polymerisation reactors for the first time. CFD tools are used first to compute the spatial distribution of the turbulent energy dissipation rates (e) inside the reaction vessel; afterwards, normalised rates of droplet breakage and particle coalescence are computed as functions of e. Surprisingly, multiphase simulations showed that the rates of energy dissipation can be very high near the free vortex surfaces, which has been completely neglected in previous works. The obtained results indicate the existence of extremely large energy dissipation gradients inside the vessel, so that particle breakage occurs primarily in very small regions that surround the impeller and the free vortex surface, while particle coalescence takes place in the liquid bulk. As a consequence, particle breakage should be regarded as an independent source term or a boundary phenomenon. Based on the obtained results, it can be very difficult to justify the use of isotropic assumptions to formulate particle population balances in similar systems, even when multiple compartment models are used to describe the fluid dynamic behaviour of the agitated vessel. (C) 2011 Canadian Society for Chemical Engineering
Resumo:
Objective: To compare the polymerization status of mouse oocyte spindles exposed to various temperatures at various stages of meiosis. Design: Experimental animal study. Setting: University animal laboratory. Animal(s): CF1 mice. Intervention(s): Immature oocytes matured to metaphase I (MI), telophase I (TI), and metaphase II (MII) were incubated at 37 degrees C (control), room temperature (RT), or 4 degrees C for 0, 10, 30, and 60 minutes. Spindle analysis subsequently was performed using polarized field microscopy and immunocytochemistry. Spindles of TI and MII oocytes that underwent vitrification and warming were analyzed also by immunocytochemistry. Main Outcome Measure(s): Detection of polymerized meiotic spindles. Result(s): At RT, and after 60 minutes at 4 degrees C, a significant time-dependent decrease in the percentage of polymerized meiotic spindles was observed in MI and MII oocytes, but not in TI oocytes. The polymerization of TI spindles at 4 degrees C was similar to that of TI spindles at 4 degrees C that underwent vitrification and warming. Conclusion(s): Significant differences in the microtubule dynamics of MI, TI, and MII oocytes incubated at different temperatures were observed. In particular, meiotic spindles in TI oocytes exhibited less depolymerization than did metaphase spindles. (Fertil Steril (R) 2012; 97: 714-9. (C) 2012 by American Society for Reproductive Medicine.)
Resumo:
In this work poly(hydroxybutyrate/poly(vinyl butyral)- co-(vinyl alcohol)-co(vinyl acetate) (or ethylene propylene diene monomer rubber) blends were prepared by conventional processing techniques (extrusion and injection moulding). A droplet type morphology was obtained for P(3HB)/PVB blends whereas P(3HB)/EPDM blends presented some extent of co-continuous morphology. In addition, rubbery domains were much smaller in the case of PVB. These differences in morphology are discussed taking into account solubility parameters and rheological behaviours of each component. For both blends, the increase of elastomer ratio led to a decrease of Young's modulus but an increase in elongation at break and impact strength. The latter increased more in the case of P(3HB)/EPDM blends although the rubbery domains were larger. These results are explained in the light of the glass transition of the rubber and the presence of plasticizer in the case of PVB. The addition of elastomer also resulted in an increase of P(3HB) biodegradation rate, especially in the case of EPDM. It is assumed that, in this case, the size and morphology of the rubbery domains induce a geometrical modification of the erosion front which leads to an increase of the interface between P(3HB) phase and the degradation medium and consequently to an apparently faster biodegradation kinetics of PHB/rubber blends. Copyright (C) 2011 Society of Chemical Industry
Resumo:
In this letter, we describe a simple and effective technique to prevent evaporation in liquid-core photonic crystal fibers (PCFs). The technique consists of using a micropipette to deploy a micro-droplet of an ultraviolet curable polymer adhesive in both core inputs. After it is cured, the adhesive creates sealing polymer plugs with quite satisfactory insertion loss (overall optical transmission of about 15%). Processed fibers remained liquid-filled for at least six weeks. From a practical point of view, we conducted a supercontinuum generation experiment in a water-core PCF to demonstrate a 120-minute spectral width stability and the ability to withstand at least 3-mW average power at the sealed fiber input. Similar experiments carried out with nonsealed fibers produced supercontinuum spectra lasting no longer than 10 minutes, with average powers kept below 0.5 mW to avoid thermally induced evaporation.
Resumo:
A detailed numerical simulation of ethanol turbulent spray combustion on a rounded jet flame is pre- sented in this article. The focus is to propose a robust mathematical model with relatively low complexity sub- models to reproduce the main characteristics of the cou- pling between both phases, such as the turbulence modulation, turbulent droplets dissipation, and evaporative cooling effect. A RANS turbulent model is implemented. Special features of the model include an Eulerian– Lagrangian procedure under a fully two-way coupling and a modified flame sheet model with a joint mixture fraction– enthalpy b -PDF. Reasonable agreement between measured and computed mean profiles of temperature of the gas phase and droplet size distributions is achieved. Deviations found between measured and predicted mean velocity profiles are attributed to the turbulent combustion modeling adopted