20 resultados para Differential equations, Partial -- Numerical solutions -- Computer programs

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we discuss the existence of mild and classical solutions for a class of abstract non-autonomous neutral functional differential equations. An application to partial neutral differential equations is considered.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we give sufficient conditions for the uniform boundedness and uniform ultimate boundedness of solutions of a class of retarded functional differential equations with impulse effects acting on variable times. We employ the theory of generalized ordinary differential equations to obtain our results. As an example, we investigate the boundedness of the solution of a circulating fuel nuclear reactor model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We characterize the existence of periodic solutions of some abstract neutral functional differential equations with finite and infinite delay when the underlying space is a UMD space. (C) 2011 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we discuss the existence of solutions for a class of abstract differential equations with nonlocal conditions for which the nonlocal term involves the temporal derivative of the solution. Some concrete applications to parabolic differential equations with nonlocal conditions are considered. (C) 2012 Royal Dutch Mathematical Society (KWG). Published by Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study measure functional differential equations and clarify their relation to generalized ordinary differential equations. We show that functional dynamic equations on time scales represent a special case of measure functional differential equations. For both types of equations, we obtain results on the existence and uniqueness of solutions, continuous dependence, and periodic averaging.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this article, we study the existence of mild solutions for fractional neutral integro-differential equations with infinite delay.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we study the continuity of invariant sets for nonautonomous infinite-dimensional dynamical systems under singular perturbations. We extend the existing results on lower-semicontinuity of attractors of autonomous and nonautonomous dynamical systems. This is accomplished through a detailed analysis of the structure of the invariant sets and its behavior under perturbation. We prove that a bounded hyperbolic global solutions persists under singular perturbations and that their nonlinear unstable manifold behave continuously. To accomplish this, we need to establish results on roughness of exponential dichotomies under these singular perturbations. Our results imply that, if the limiting pullback attractor of a nonautonomous dynamical system is the closure of a countable union of unstable manifolds of global bounded hyperbolic solutions, then it behaves continuously (upper and lower) under singular perturbations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Let (X, parallel to . parallel to) be a Banach space and omega is an element of R. A bounded function u is an element of C([0, infinity); X) is called S-asymptotically omega-periodic if lim(t ->infinity)[u(t + omega) - u(t)] = 0. In this paper, we establish conditions under which an S-asymptotically omega-periodic function is asymptotically omega-periodic and we discuss the existence of S-asymptotically omega-periodic and asymptotically omega-periodic solutions for an abstract integral equation. Some applications to partial differential equations and partial integro-differential equations are considered. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we introduce a new class of abstract integral equations which enables us to study in a unified manner several different types of differential equations. (C) 2012 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We obtain boundedness and asymptotic behavior of solutions for semilinear functional difference equations with infinite delay. Applications to Volterra difference equations with infinite delay are shown. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work the differentiability of the principal eigenvalue lambda = lambda(1)(Gamma) to the localized Steklov problem -Delta u + qu = 0 in Omega, partial derivative u/partial derivative nu = lambda chi(Gamma)(x)u on partial derivative Omega, where Gamma subset of partial derivative Omega is a smooth subdomain of partial derivative Omega and chi(Gamma) is its characteristic function relative to partial derivative Omega, is shown. As a key point, the flux subdomain Gamma is regarded here as the variable with respect to which such differentiation is performed. An explicit formula for the derivative of lambda(1) (Gamma) with respect to Gamma is obtained. The lack of regularity up to the boundary of the first derivative of the principal eigenfunctions is a further intrinsic feature of the problem. Therefore, the whole analysis must be done in the weak sense of H(1)(Omega). The study is of interest in mathematical models in morphogenesis. (C) 2011 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The retaking of the ethanol program in the year 2003 as a fuel for light road transportation in Brazil through the introduction of flex fuel vehicles fleet was a good strategy to overcome the difficulties of the ethanol production sector and did work to increase its market share relative to gasoline. This process, however, may cause a future disequilibrium on the food production and on the refining oil derivates structure. In order to analyze the substitution process resultant of the competition between two opponents fighting for the same market, in this case the gasoline/ethanol substitution process, a method derived from the biomathematics based on the non-linear differential equations (NLDE) system is utilized. A brief description of the method is presented. Numerical adherence of the method to explain several substitution phenomena that occurred in the past is presented in the previous author`s paper, in which the urban gas pipeline system substitution of bottled LPG in the dwelling sector and the substitution of the urban diesel transportation fleet by compressed natural gas (CNG) buses is presented. The proposed method is particularly suitable for prospective analysis and scenarios assessment. (c) 2008 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In epidemiology, the basic reproduction number R-0 is usually defined as the average number of new infections caused by a single infective individual introduced into a completely susceptible population. According to this definition. R-0 is related to the initial stage of the spreading of a contagious disease. However, from epidemiological models based on ordinary differential equations (ODE), R-0 is commonly derived from a linear stability analysis and interpreted as a bifurcation parameter: typically, when R-0 >1, the contagious disease tends to persist in the population because the endemic stationary solution is asymptotically stable: when R-0 <1, the corresponding pathogen tends to naturally disappear because the disease-free stationary solution is asymptotically stable. Here we intend to answer the following question: Do these two different approaches for calculating R-0 give the same numerical values? In other words, is the number of secondary infections caused by a unique sick individual equal to the threshold obtained from stability analysis of steady states of ODE? For finding the answer, we use a susceptibleinfective-recovered (SIR) model described in terms of ODE and also in terms of a probabilistic cellular automaton (PCA), where each individual (corresponding to a cell of the PCA lattice) is connected to others by a random network favoring local contacts. The values of R-0 obtained from both approaches are compared, showing good agreement. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider a superfluid cloud composed of a Bose-Einstein condensate oscillating within a magnetic trap (dipole mode) where, due to the existence of a Feshbach resonance, an effective periodic time-dependent modulation in the scattering length is introduced. Under this condition, collective excitations such as the quadrupole mode can take place. We approach this problem by employing both the Gaussian and the Thomas-Fermi variational Ansatze. The resulting dynamic equations are analyzed by considering both linear approximations and numerical solutions, where we observe coupling between dipole and quadrupole modes. Aspects of this coupling related to the variation of the dipole oscillation amplitude are analyzed. This may be a relevant effect in situations where oscillation in a magnetic field in the presence of a bias field B takes place, and should be considered in the interpretation of experimental results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose - The purpose of this paper is to develop an efficient numerical algorithm for the self-consistent solution of Schrodinger and Poisson equations in one-dimensional systems. The goal is to compute the charge-control and capacitance-voltage characteristics of quantum wire transistors. Design/methodology/approach - The paper presents a numerical formulation employing a non-uniform finite difference discretization scheme, in which the wavefunctions and electronic energy levels are obtained by solving the Schrodinger equation through the split-operator method while a relaxation method in the FTCS scheme ("Forward Time Centered Space") is used to solve the two-dimensional Poisson equation. Findings - The numerical model is validated by taking previously published results as a benchmark and then applying them to yield the charge-control characteristics and the capacitance-voltage relationship for a split-gate quantum wire device. Originality/value - The paper helps to fulfill the need for C-V models of quantum wire device. To do so, the authors implemented a straightforward calculation method for the two-dimensional electronic carrier density n(x,y). The formulation reduces the computational procedure to a much simpler problem, similar to the one-dimensional quantization case, significantly diminishing running time.