6 resultados para Diamond bur

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background: The aim of this study was to compare the shear bond strength between Ni-Cr alloy specimens bonded to air-abraded Ni-Cr, bur-abraded Ni-Cr, etched ceramic and etched enamel substrates using the resin cements RelyX ARC or Enforce. Materials and methods: Ni-Cr specimens were made and sandblasted with Al2O3 airborne-particles. Disc-shaped patterns were made for each of the four experimental substrates: Ni-Cr treated with Al2O3 airborne-particles, Ni-Cr treated with diamond bur abrasion, etched enamel and etched ceramic. Results: Significant differences in shear bond strength were found between the different materials and luting agents evaluated. The Ni-Cr alloy cylinders bonded to Ni-Cr surfaces sandblasted with 50 lm Al2O3 particles and bonded with Enforce achieved the highest bond strength when compared with other substrates (28.9 MPa, p < 0.05). Bur-abraded metal discs had lowest values, regardless the cement used (2.9 and 6.9 MPa for RelyX and Enforce, respectively). Etched enamel and etched ceramic had similar shear bond strengths within cement groups and performed better when RelyX was used. Conclusions: Bonding Ni-Cr to Ni-Cr and ceramic may result in similar and higher bond strength when compared to Ni-Cr/enamel bonding. For metal/metal bonding, higher shear bond strength was achieved with resin cement Enforce, and for metal/ceramic and metal/enamel bonding, RelyX had higher results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have explored the suitability and characteristics of interface tailoring as a tool for enhancing the adhesion of hydrogen-free diamond-like carbon (DLC) thin films to silicon substrates. DLC films were deposited on silicon with and without application of an initial high energy carbon ion bombardment phase that formed a broad Si-C interface of gradually changing Si:C composition. The interface depth profile was calculated using the TRIDYN simulation program, revealing a gradient of carbon concentration including a region with the stoichiometry of silicon carbide. DLC films on silicon, with and without interface tailoring, were characterized using Raman spectroscopy, scanning electron microscopy, atomic force microscopy and scratch tests. The Raman spectroscopy results indicated sp3-type carbon bonding content of up to 80%. Formation of a broadened Si:C interface as formed here significantly enhances the adhesion of DLC films to the underlying silicon substrate. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have explored the effects of atmospheric environment on Kelvin force microscopy (KFM) measurements of potential difference between different regions of test polycrystalline diamond surfaces. The diamond films were deposited by microwave plasma-assisted chemical vapor deposition, which naturally produces hydrogen terminations on the surface of the films formed. Selected regions were patterned by electron-beam lithography and chemical terminations of oxygen or fluorine were created by exposure to an oxygen or fluorine plasma source. For KFM imaging, the samples were mounted in a hood with a constant flow of helium gas. Successive images were taken over a 5-h period showing the effect of the environment on KFM imaging. We conclude that the helium flow removes water molecules adsorbed on the surface of the samples, resulting in differences in surface potential between adjacent regions. The degree of water removal is different for surfaces with different terminations. The results highlight the importance of taking into account the atmospheric environment when carrying out KFM analysis. (C) 2012 Wiley Periodicals, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The thiadiazolylurea derivative tebuthiuron (TBH) is commonly used as an herbicide even though it is highly toxic to humans. While various processes have been proposed for the removal of organic contaminants of this type from wastewater, electrochemical degradation has shown particular promise. The aim of the present study was to investigate the electrochemical degradation of TBH using anodes comprising boron-doped (5000 and 30000 ppm) diamond (BDD) films deposited onto Ti substrates operated at current densities in the range 10-200 mA cm(-2). Both anodes removed TBH following a similar pseudo first-order reaction kinetics with k(ap)p close to 3.2 x 10(-2) min(-1). The maximum mineralization efficiency obtained was 80%. High-pressure liquid chromatography with UV-VIS detection established that both anodes degraded TBH via similar intermediates. Ion chromatography revealed that increasing concentrations of nitrate ions (up to 0.9 ppm) were formed with increasing current density, while the formation of nitrite ions was observed with both anodes at current densities >= 150 mA cm(-2). The BDD film prepared at the lower doping level (5000 ppm) was more efficient in degrading TBH than its more highly doped counterpart. This unexpected finding may be explained in terms of the quantity of impurities incorporated into the diamond lattice during chemical vapor deposition. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We describe work in which gold nanoparticles were formed in diamond-like carbon (DLC), thereby generating a Au-DLC nanocomposite. A high-quality, hydrogen-free DLC thin film was formed by filtered vacuum arc plasma deposition, into which gold nanoparticles were introduced using two different methods. The first method was gold ion implantation into the DLC film at a number of decreasing ion energies, distributing the gold over a controllable depth range within the DLC. The second method was co-deposition of gold and carbon, using two separate vacuum arc plasma guns with suitably interleaved repetitive pulsing. Transmission electron microscope images show that the size of the gold nanoparticles obtained by ion implantation is 3-5 nm. For the Au-DLC composite obtained by co-deposition, there were two different nanoparticle sizes, most about 2 nm with some 6-7 nm. Raman spectroscopy indicates that the implanted sample contains a smaller fraction of sp(3) bonding for the DLC, demonstrating that some sp(3) bonds are destroyed by the gold implantation. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4757029]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this paper is to show the dependence relationship between the crystallographic orientations upon brittle-to-ductile transition during diamond turning of monocrystalline silicon. Cutting tests were performed using a -5 degrees rake angle round nose diamond tool at different machining scales. At the micrometre level, the feedrate was kept constant at 2.5 micrometres per revolution (mu m/r), and the depth of cut was varied from 1 to 5 mu m. At the submicrometre level, the depth of cut was kept constant at 500 nm and the feedrate varied from 5 to 10 mu m/r. At the micrometre level, the uncut shoulder generated with an interrupted cutting test procedure provided a quantitative measurement of the ductile-to-brittle transition. Results show that the critical chip thickness in silicon for ductile material removal reaches a maximum of 285 nm in the [100] direction and a minimum of 115 nm in the [110] direction, when the depth of cut was 5 mu m. It was found that when a submicrometre depth of cut was applied, microcracks were revealed in the [110] direction, which is the softer direction in silicon. Micro Raman spectroscopy was used to estimate surface residual stress after machining. Compressive residual stress in the range 142 MPa and smooth damage free surface finish was probed in the [100] direction for a depth of cut of 5 mu m, whereas residual stresses in the range 350 MPa and brittle damage was probed in the [110] direction for a depth of cut of 500 nm.