8 resultados para Depth Estimation,Deep Learning,Disparity Estimation,Computer Vision,Stereo Vision
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Stereoscopic depth perception utilizes the disparity cues between the images that fall on the retinae of the two eyes. The purpose of this study was to determine what role aging and optical blur play in stereoscopic disparity sensitivity for real depth stimuli. Forty-six volunteers were tested ranging in age from 15 to 60 years. Crossed and uncrossed disparity thresholds were measured using white light under conditions of best optical correction. The uncrossed disparity thresholds were also measured with optical blur (from +1.0D to +5.0D added to the best correction). Stereothresholds were measured using the Frisby Stereo Test, which utilizes a four-alternative forced-choice staircase procedure. The threshold disparities measured for young adults were frequently lower than 10 arcsec, a value considerably lower than the clinical estimates commonly obtained using Random Dot Stereograms (20 arcsec) or Titmus Fly Test (40 arcsec) tests. Contrary to previous reports, disparity thresholds increased between the ages of 31 and 45 years. This finding should be taken into account in clinical evaluation of visual function of older patients. Optical blur degrades visual acuity and stereoacuity similarly under white-light conditions, indicating that both functions are affected proportionally by optical defocus.
Resumo:
Inspection for corrosion of gas storage spheres at the welding seam lines must be done periodically. Until now this inspection is being done manually and has a high cost associated to it and a high risk of inspection personel injuries. The Brazilian Petroleum Company, Petrobras, is seeking cost reduction and personel safety by the use of autonomous robot technology. This paper presents the development of a robot capable of autonomously follow a welding line and transporting corrosion measurement sensors. The robot uses a pair of sensors each composed of a laser source and a video camera that allows the estimation of the center of the welding line. The mechanical robot uses four magnetic wheels to adhere to the sphere's surface and was constructed in a way that always three wheels are in contact with the sphere's metallic surface which guarantees enough magnetic atraction to hold the robot in the sphere's surface all the time. Additionally, an independently actuated table for attaching the corrosion inspection sensors was included for small position corrections. Tests were conducted at the laboratory and in a real sphere showing the validity of the proposed approach and implementation.
Resumo:
The aims of this study were to investigate work conditions, to estimate the prevalence and to describe risk factors associated with Computer Vision Syndrome among two call centers' operators in Sao Paulo (n = 476). The methods include a quantitative cross-sectional observational study and an ergonomic work analysis, using work observation, interviews and questionnaires. The case definition was the presence of one or more specific ocular symptoms answered as always, often or sometimes. The multiple logistic regression model, were created using the stepwise forward likelihood method and remained the variables with levels below 5% (p < 0.05). The operators were mainly female and young (from 15 to 24 years old). The call center was opened 24 hours and the operators weekly hours were 36 hours with break time from 21 to 35 minutes per day. The symptoms reported were eye fatigue (73.9%), "weight" in the eyes (68.2%), "burning" eyes (54.6%), tearing (43.9%) and weakening of vision (43.5%). The prevalence of Computer Vision Syndrome was 54.6%. Associations verified were: being female (OR 2.6, 95% CI 1.6 to 4.1), lack of recognition at work (OR 1.4, 95% CI 1.1 to 1.8), organization of work in call center (OR 1.4, 95% CI 1.1 to 1.7) and high demand at work (OR 1.1, 95% CI 1.0 to 1.3). The organization and psychosocial factors at work should be included in prevention programs of visual syndrome among call centers' operators.
Resumo:
Semisupervised learning is a machine learning approach that is able to employ both labeled and unlabeled samples in the training process. In this paper, we propose a semisupervised data classification model based on a combined random-preferential walk of particles in a network (graph) constructed from the input dataset. The particles of the same class cooperate among themselves, while the particles of different classes compete with each other to propagate class labels to the whole network. A rigorous model definition is provided via a nonlinear stochastic dynamical system and a mathematical analysis of its behavior is carried out. A numerical validation presented in this paper confirms the theoretical predictions. An interesting feature brought by the competitive-cooperative mechanism is that the proposed model can achieve good classification rates while exhibiting low computational complexity order in comparison to other network-based semisupervised algorithms. Computer simulations conducted on synthetic and real-world datasets reveal the effectiveness of the model.
Resumo:
Bilayer segmentation of live video in uncontrolled environments is an essential task for home applications in which the original background of the scene must be replaced, as in videochats or traditional videoconference. The main challenge in such conditions is overcome all difficulties in problem-situations (e. g., illumination change, distract events such as element moving in the background and camera shake) that may occur while the video is being captured. This paper presents a survey of segmentation methods for background substitution applications, describes the main concepts and identifies events that may cause errors. Our analysis shows that although robust methods rely on specific devices (multiple cameras or sensors to generate depth maps) which aid the process. In order to achieve the same results using conventional devices (monocular video cameras), most current research relies on energy minimization frameworks, in which temporal and spacial information are probabilistically combined with those of color and contrast.
Resumo:
Texture image analysis is an important field of investigation that has attracted the attention from computer vision community in the last decades. In this paper, a novel approach for texture image analysis is proposed by using a combination of graph theory and partially self-avoiding deterministic walks. From the image, we build a regular graph where each vertex represents a pixel and it is connected to neighboring pixels (pixels whose spatial distance is less than a given radius). Transformations on the regular graph are applied to emphasize different image features. To characterize the transformed graphs, partially self-avoiding deterministic walks are performed to compose the feature vector. Experimental results on three databases indicate that the proposed method significantly improves correct classification rate compared to the state-of-the-art, e.g. from 89.37% (original tourist walk) to 94.32% on the Brodatz database, from 84.86% (Gabor filter) to 85.07% on the Vistex database and from 92.60% (original tourist walk) to 98.00% on the plant leaves database. In view of these results, it is expected that this method could provide good results in other applications such as texture synthesis and texture segmentation. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Recently there has been a considerable interest in dynamic textures due to the explosive growth of multimedia databases. In addition, dynamic texture appears in a wide range of videos, which makes it very important in applications concerning to model physical phenomena. Thus, dynamic textures have emerged as a new field of investigation that extends the static or spatial textures to the spatio-temporal domain. In this paper, we propose a novel approach for dynamic texture segmentation based on automata theory and k-means algorithm. In this approach, a feature vector is extracted for each pixel by applying deterministic partially self-avoiding walks on three orthogonal planes of the video. Then, these feature vectors are clustered by the well-known k-means algorithm. Although the k-means algorithm has shown interesting results, it only ensures its convergence to a local minimum, which affects the final result of segmentation. In order to overcome this drawback, we compare six methods of initialization of the k-means. The experimental results have demonstrated the effectiveness of our proposed approach compared to the state-of-the-art segmentation methods.
Resumo:
Dynamic texture is a recent field of investigation that has received growing attention from computer vision community in the last years. These patterns are moving texture in which the concept of selfsimilarity for static textures is extended to the spatiotemporal domain. In this paper, we propose a novel approach for dynamic texture representation, that can be used for both texture analysis and segmentation. In this method, deterministic partially self-avoiding walks are performed in three orthogonal planes of the video in order to combine appearance and motion features. We validate our method on three applications of dynamic texture that present interesting challenges: recognition, clustering and segmentation. Experimental results on these applications indicate that the proposed method improves the dynamic texture representation compared to the state of the art.