7 resultados para Data mining methods
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Abstract Background Once multi-relational approach has emerged as an alternative for analyzing structured data such as relational databases, since they allow applying data mining in multiple tables directly, thus avoiding expensive joining operations and semantic losses, this work proposes an algorithm with multi-relational approach. Methods Aiming to compare traditional approach performance and multi-relational for mining association rules, this paper discusses an empirical study between PatriciaMine - an traditional algorithm - and its corresponding multi-relational proposed, MR-Radix. Results This work showed advantages of the multi-relational approach in performance over several tables, which avoids the high cost for joining operations from multiple tables and semantic losses. The performance provided by the algorithm MR-Radix shows faster than PatriciaMine, despite handling complex multi-relational patterns. The utilized memory indicates a more conservative growth curve for MR-Radix than PatriciaMine, which shows the increase in demand of frequent items in MR-Radix does not result in a significant growth of utilized memory like in PatriciaMine. Conclusion The comparative study between PatriciaMine and MR-Radix confirmed efficacy of the multi-relational approach in data mining process both in terms of execution time and in relation to memory usage. Besides that, the multi-relational proposed algorithm, unlike other algorithms of this approach, is efficient for use in large relational databases.
Resumo:
The reproductive performance of cattle may be influenced by several factors, but mineral imbalances are crucial in terms of direct effects on reproduction. Several studies have shown that elements such as calcium, copper, iron, magnesium, selenium, and zinc are essential for reproduction and can prevent oxidative stress. However, toxic elements such as lead, nickel, and arsenic can have adverse effects on reproduction. In this paper, we applied a simple and fast method of multi-element analysis to bovine semen samples from Zebu and European classes used in reproduction programs and artificial insemination. Samples were analyzed by inductively coupled plasma spectrometry (ICP-MS) using aqueous medium calibration and the samples were diluted in a proportion of 1:50 in a solution containing 0.01% (vol/vol) Triton X-100 and 0.5% (vol/vol) nitric acid. Rhodium, iridium, and yttrium were used as the internal standards for ICP-MS analysis. To develop a reliable method of tracing the class of bovine semen, we used data mining techniques that make it possible to classify unknown samples after checking the differentiation of known-class samples. Based on the determination of 15 elements in 41 samples of bovine semen, 3 machine-learning tools for classification were applied to determine cattle class. Our results demonstrate the potential of support vector machine (SVM), multilayer perceptron (MLP), and random forest (RF) chemometric tools to identify cattle class. Moreover, the selection tools made it possible to reduce the number of chemical elements needed from 15 to just 8.
Resumo:
Multi-element analysis of honey samples was carried out with the aim of developing a reliable method of tracing the origin of honey. Forty-two chemical elements were determined (Al, Cu, Pb, Zn, Mn, Cd, Tl, Co, Ni, Rb, Ba, Be, Bi, U, V, Fe, Pt, Pd, Te, Hf, Mo, Sn, Sb, P, La, Mg, I, Sm, Tb, Dy, Sd, Th, Pr, Nd, Tm, Yb, Lu, Gd, Ho, Er, Ce, Cr) by inductively coupled plasma mass spectrometry (ICP-MS). Then, three machine learning tools for classification and two for attribute selection were applied in order to prove that it is possible to use data mining tools to find the region where honey originated. Our results clearly demonstrate the potential of Support Vector Machine (SVM), Multilayer Perceptron (MLP) and Random Forest (RF) chemometric tools for honey origin identification. Moreover, the selection tools allowed a reduction from 42 trace element concentrations to only 5. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
In [1], the authors proposed a framework for automated clustering and visualization of biological data sets named AUTO-HDS. This letter is intended to complement that framework by showing that it is possible to get rid of a user-defined parameter in a way that the clustering stage can be implemented more accurately while having reduced computational complexity
Resumo:
We review recent visualization techniques aimed at supporting tasks that require the analysis of text documents, from approaches targeted at visually summarizing the relevant content of a single document to those aimed at assisting exploratory investigation of whole collections of documents.Techniques are organized considering their target input materialeither single texts or collections of textsand their focus, which may be at displaying content, emphasizing relevant relationships, highlighting the temporal evolution of a document or collection, or helping users to handle results from a query posed to a search engine.We describe the approaches adopted by distinct techniques and briefly review the strategies they employ to obtain meaningful text models, discuss how they extract the information required to produce representative visualizations, the tasks they intend to support and the interaction issues involved, and strengths and limitations. Finally, we show a summary of techniques, highlighting their goals and distinguishing characteristics. We also briefly discuss some open problems and research directions in the fields of visual text mining and text analytics.
Resumo:
Context. The ESO public survey VISTA variables in the Via Lactea (VVV) started in 2010. VVV targets 562 sq. deg in the Galactic bulge and an adjacent plane region and is expected to run for about five years. Aims. We describe the progress of the survey observations in the first observing season, the observing strategy, and quality of the data obtained. Methods. The observations are carried out on the 4-m VISTA telescope in the ZYJHK(s) filters. In addition to the multi-band imaging the variability monitoring campaign in the K-s filter has started. Data reduction is carried out using the pipeline at the Cambridge Astronomical Survey Unit. The photometric and astrometric calibration is performed via the numerous 2MASS sources observed in each pointing. Results. The first data release contains the aperture photometry and astrometric catalogues for 348 individual pointings in the ZYJHK(s) filters taken in the 2010 observing season. The typical image quality is similar to 0 ''.9-1 ''.0. The stringent photometric and image quality requirements of the survey are satisfied in 100% of the JHK(s) images in the disk area and 90% of the JHK(s) images in the bulge area. The completeness in the Z and Y images is 84% in the disk, and 40% in the bulge. The first season catalogues contain 1.28 x 10(8) stellar sources in the bulge and 1.68 x 10(8) in the disk area detected in at least one of the photometric bands. The combined, multi-band catalogues contain more than 1.63 x 10(8) stellar sources. About 10% of these are double detections because of overlapping adjacent pointings. These overlapping multiple detections are used to characterise the quality of the data. The images in the JHK(s) bands extend typically similar to 4 mag deeper than 2MASS. The magnitude limit and photometric quality depend strongly on crowding in the inner Galactic regions. The astrometry for K-s = 15-18 mag has rms similar to 35-175 mas. Conclusions. The VVV Survey data products offer a unique dataset to map the stellar populations in the Galactic bulge and the adjacent plane and provide an exciting new tool for the study of the structure, content, and star-formation history of our Galaxy, as well as for investigations of the newly discovered star clusters, star-forming regions in the disk, high proper motion stars, asteroids, planetary nebulae, and other interesting objects.
Resumo:
Abstract Background Mycelium-to-yeast transition in the human host is essential for pathogenicity by the fungus Paracoccidioides brasiliensis and both cell types are therefore critical to the establishment of paracoccidioidomycosis (PCM), a systemic mycosis endemic to Latin America. The infected population is of about 10 million individuals, 2% of whom will eventually develop the disease. Previously, transcriptome analysis of mycelium and yeast cells resulted in the assembly of 6,022 sequence groups. Gene expression analysis, using both in silico EST subtraction and cDNA microarray, revealed genes that were differential to yeast or mycelium, and we discussed those involved in sugar metabolism. To advance our understanding of molecular mechanisms of dimorphic transition, we performed an extended analysis of gene expression profiles using the methods mentioned above. Results In this work, continuous data mining revealed 66 new differentially expressed sequences that were MIPS(Munich Information Center for Protein Sequences)-categorised according to the cellular process in which they are presumably involved. Two well represented classes were chosen for further analysis: (i) control of cell organisation – cell wall, membrane and cytoskeleton, whose representatives were hex (encoding for a hexagonal peroxisome protein), bgl (encoding for a 1,3-β-glucosidase) in mycelium cells; and ags (an α-1,3-glucan synthase), cda (a chitin deacetylase) and vrp (a verprolin) in yeast cells; (ii) ion metabolism and transport – two genes putatively implicated in ion transport were confirmed to be highly expressed in mycelium cells – isc and ktp, respectively an iron-sulphur cluster-like protein and a cation transporter; and a putative P-type cation pump (pct) in yeast. Also, several enzymes from the cysteine de novo biosynthesis pathway were shown to be up regulated in the yeast form, including ATP sulphurylase, APS kinase and also PAPS reductase. Conclusion Taken together, these data show that several genes involved in cell organisation and ion metabolism/transport are expressed differentially along dimorphic transition. Hyper expression in yeast of the enzymes of sulphur metabolism reinforced that this metabolic pathway could be important for this process. Understanding these changes by functional analysis of such genes may lead to a better understanding of the infective process, thus providing new targets and strategies to control PCM.