10 resultados para Dalbergia nigra

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective: Hyperechogenicity of the substantia nigra is a frequent observation on transcranial sonography in Parkinson's disease and Machado-Joseph disease patients. Additionally, restless legs syndrome is a sleep disorder that is also frequently found in both diseases. Autopsy studies have demonstrated increased SN iron content in hyperechogenic substantia nigra. Iron storage is also known to be involved in restless legs syndrome. We formally compared echogenicity of the substantia nigra with restless legs syndrome in Parkinson's disease and Machado-Joseph disease patients. Methods: Transcranial brain sonography was performed in a sample of Parkinson's disease and Machado-Joseph disease patients, and findings then correlated with the presence and severity of restless legs syndrome. Results: There was a continuum of substantia nigra echogenicity among groups (Parkinson's disease versus Machado-Joseph disease versus controls) and sub-groups (Parkinson's disease with and without restless legs syndrome versus Machado-Joseph disease with and without restless legs syndrome) as well as a statistically significant negative correlation between restless legs syndrome severity and substantia nigra echogenicity (p<0.001). Conclusions: These preliminary observations demonstrate that the severity of RLS may be influenced by nigral iron load reflected by substantia nigra echogenicity in different neurodegenerative movement disorders. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Metrodorea nigra (Rutaceae) is an endemic Brazilian tree of great ecological importance, frequently found in the submontane regions of ombrophilous dense and semideciduous forests. This tree is useful for reforesting degraded areas and the wood can be employed in construction. We developed 12 microsatellite markers from a genomic library enriched for GA/CA repeats, for this species. Polymorphisms were assessed in 40 trees of a highly fragmented population found in Cravinhos, State of Sao Paulo, in southeastern Brazil. Among the 12 loci, 8 were polymorphic and only one had fixed alleles in this population. The number of alleles per locus and expected heterozygosity ranged from 2 to 11 and from 0.190 to 0.889, respectively. These results revealed moderate levels of genetic variation in M. nigra population when compared to other tropical species. Additionally, transferability of the 12 primers was tested in seven other Brazilian Rutaceae tree species (endemics: M. stipularis, Galipea jasminiflora, Esenbeckia leiocarpa and non-endemics: E. febrifuga, E. grandiflora, Balfourodendron riedelianum, Zanthoxylum riedelianum). Transferability ranged among species, but at least 8 loci (similar to 67%) amplified in M. stipularis, demonstrating a high potential for transferring microsatellite markers between species of the same genus in the Rutaceae family.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper revises the bees currently considered to belong to the genus Rhectomia s.l. and proposes a species phylogeny based on morphological characters, using other Corynurina as outgroups. The results indicate that Rhinocorynura Schrottky renders Rhectomia s.l. paraphyletic. Consequently, Corynurella is removed from synonymy with Rhectomia s.s., and Paracorynurella gen.n. is proposed. The topology among these genera is: outgroup [(Rhectomia s.s. + Rhinocorynura) (Paracorynurella gen.n. + Corynurella)]. Nine species are assigned to Corynurella: C. brokopondoi sp.n., C. caerulea sp.n., C. cognata sp.n., C. decora sp.n., C. harrisoni (Engel), C. mourei Eickwort, C. nigra sp.n., C. singularis sp.n. and C. triangulata sp.n. Three new species are described in Paracorynurella gen.n.: type species P. betoi sp.n., P. excavata sp.n., P. reticulata sp.n.; P. difficillima (Ducke) comb.n. is transferred from Rhinocorynura. Three species are recognized in Rhectomia s.s.: R. catarina sp.n., R. liebherri Engel and R. pumilla Moure. The male of R. liebherri is described for the first time. Keys for the identification of the genera and species are provided.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The superior colliculus (SC) is responsible for sensorimotor transformations required to direct gaze toward or a way from unexpected, biologically salient events. Significant changes in the external world are signaled to SC through primary multisensory afferents, spatially organized according to a retinotopic topography. For animals, where anunexpected event could indicate the presence of either predator or prey, early decisions to approach or avoid are particularly important. Rodents' ecology dictates predators are most often detected initially as movements in upper visual field (mapped in medial SC), while appetitive stimuli are normally found in lower visual field (mapped in lateral SC). Our purpose was to exploit this functional segregation to reveal neural sites that can bias or modulate initial approach or avoidance responses. Small injections of Fluoro-Gold were made into medial or lateral sub-regions of intermediate and deep layers of SC (SCm/SCl). A remarkable segregation of input to these two functionally defined areas was found. (i) There were structures that projected only to SCm (e.g., specific cortical areas, lateral geniculate and suprageniculate thalamic nuclei, ventromedial and premammillary hypothalamic nuclei, and several brain-stem areas) or SCl (e.g., primary somatosensory cortex representing upper body parts and vibrissae and parvicellular reticular nucleus in the brainstem). (ii) Other structures projected to both SCm and SCl but from topographically segregated populations of neurons (e.g., zona incerta and substantia nigra pars reticulata). (iii) There were a few brainstem areas in which retrogradely labeled neurons were spatially overlapping (e.g., pedunculopontine nucleus and locus coeruleus). These results indicate significantly more structures across the rat neuraxis are in a position to modulate defense responses evoked from SCm, and that neural mechanisms modulating SC-mediated defense or appetitive behavior are almost entirely segregated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The role of the substantia nigra pars reticulata (SNPr) and superior colliculus (SC) network in rat strains susceptible to audiogenic seizures still remain underexplored in epileptology. In a previous study from our laboratory, the GABAergic drugs bicuculline (BIC) and muscimol (MUS) were microinjected into the deep layers of either the anterior SC (aSC) or the posterior SC (pSC) in animals of the Wistar audiogenic rat (WAR) strain submitted to acoustic stimulation, in which simultaneous electroencephalographic (EEG) recording of the aSC, pSC, SNPr and striatum was performed. Only MUS microinjected into the pSC blocked audiogenic seizures. In the present study, we expanded upon these previous results using the retrograde tracer Fluorogold (FG) microinjected into the aSC and pSC in conjunction with quantitative EEG analysis (wavelet transform), in the search for mechanisms associated with the susceptibility of this inbred strain to acoustic stimulation. Our hypothesis was that the WAR strain would have different connectivity between specific subareas of the superior colliculus and the SNPr when compared with resistant Wistar animals and that these connections would lead to altered behavior of this network during audiogenic seizures. Wavelet analysis showed that the only treatment with an anticonvulsant effect was MUS microinjected into the pSC region, and this treatment induced a sustained oscillation in the theta band only in the SNPr and in the pSC. These data suggest that in WAR animals, there are at least two subcortical loops and that the one involved in audiogenic seizure susceptibility appears to be the pSC-SNPr circuit. We also found that WARs presented an increase in the number of FG + projections from the posterior SNPr to both the aSC and pSC (primarily to the pSC), with both acting as proconvulsant nuclei when compared with Wistar rats. We concluded that these two different subcortical loops within the basal ganglia are probably a consequence of the WAR genetic background. (C) 2012 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The ether A go-go (Eag) gene encodes the voltage-gated potassium (K+) ion channel Kv10.1, whose function still remains unknown. As dopamine may directly affect K+ channels, we evaluated whether a nigrostriatal dopaminergic lesion induced by the neurotoxin 6-hydroxydopamine (6-OHDA) would alter Eag1-K+ channel expression in the rat basal ganglia and related brain regions. Male Wistar rats received a microinjection of either saline or 6-OHDA (unilaterally) into the medial forebrain bundle. The extent of the dopaminergic lesion induced by 6-OHDA was evaluated by apomorphine-induced rotational behavior and by tyrosine hydroxylase (TH) immunoreactivity. The 6-OHDA microinjection caused a partial or complete lesion of dopaminergic cells, as well as a reduction of Eag1+ cells in a manner proportional to the extent of the lesion. In addition, we observed a decrease in TH immunoreactivity in the ipsilateral striatum. In conclusion, the expression of the Eag1-K+-channel throughout the nigrostriatal pathway in the rat brain, its co-localization with dopaminergic cells and its reduction mirroring the extent of the lesion highlight a physiological circuitry where the functional role of this channel can be investigated. The Eag1-K+ channel expression in dopaminergic cells suggests that these channels are part of the diversified group of ion channels that generate and maintain the electrophysiological activity pattern of dopaminergic midbrain neurons.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Transcranial sonography has become a useful tool in the differential diagnosis of parkinsonian syndromes. This is a non-invasive, low cost procedure. The main finding on transcranial sonography in patients with idiopathic Parkinson's disease is an increased echogenicity of the mesencephalic substantia nigra region. This hyperechogenicity is present in more than 90% of cases, and reflects a dysfunction in the dopaminergic nigrostriatal pathway. This study discussed how the hyperechogenicity of the substantia nigra may facilitate the differential diagnosis of parkinsonian syndromes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The endocannabinoid system has been implicated in several neurobiological processes, including neurodegeneration, neuroprotection and neuronal plasticity. The CB1 cannabinoid receptors are abundantly expressed in the basal ganglia, the circuitry that is mostly affected in Parkinson’s Disease (PD). Some studies show variation of CB1 expression in basal ganglia in different animal models of PD, however the results are quite controversial, due to the differences in the procedures employed to induce the parkinsonism and the periods analyzed after the lesion. The present study evaluated the CB1 expression in four basal ganglia structures, namely striatum, external globus pallidus (EGP), internal globus pallidus (IGP) and substantia nigra pars reticulata (SNpr) of rats 1, 5, 10, 20, and 60 days after unilateral intrastriatal 6-hydroxydopamine injections, that causes retrograde dopaminergic degeneration. We also investigated tyrosine hydroxylase (TH), parvalbumin, calbindin and glutamic acid decarboxylase (GAD) expression to verify the status of dopaminergic and GABAergic systems. We observed a structure-specific modulation of CB1 expression at different periods after lesions. In general, there were no changes in the striatum, decreased CB1 in IGP and SNpr and increased CB1 in EGP, but this increase was not sustained over time. No changes in GAD and parvalbumin expression were observed in basal ganglia, whereas TH levels were decreased and the calbindin increased in striatum in short periods after lesion. We believe that the structure-specific variation of CB1 in basal ganglia in the 6-hydroxydopamine PD model could be related to a compensatory process involving the GABAergic transmission, which is impaired due to the lack of dopamine. Our data, therefore, suggest that the changes of CB1 and calbindin expression may represent a plasticity process in this PD model

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We explored the impact of Nox-2 in modulating inflammatory-mediated microglial responses in the 6-hydroxydopamine (6-OHDA)-induced Parkinson’s disease (PD) model. Nox1 and Nox2 gene expression were found to increase in striatum, whereas a marked increase of Nox2 expression was observed in substantia nigra (SN) of wild-type (wt) mice after PD induction. Gp91phox-/- 6-OHDA-lesioned mice exhibited a significant reduction in the apomorphine-induced rotational behavior, when compared to wt mice. Immunolabeling assays indicated that striatal 6-OHDA injections reduced the number of dopaminergic (DA) neurons in the SN of wt mice. In gp91phox-/- 6-OHDA-lesioned mice the DA degeneration was negligible, suggesting an involvement of Nox in 6-OHDA-mediated SN degeneration. Gp91phox-/- 6-OHDA-lesioned mice treated with minocycline, a tetracycline derivative that exerts multiple anti-inflammatory effects, including microglial inhibition, exhibited increased apomorphine-induced rotational behavior and degeneration of DA neurons after 6-OHDA injections. The same treatment also increased TNF-α release and potentiated NF-κB activation in the SN of gp91phox-/--lesioned mice. Our results demonstrate for the first time that inhibition of microglial cells increases the susceptibility of gp91phox-/- 6-OHDA lesioned mice to develop PD. Blockade of microglia leads to NF-κB activation and TNF-α release into the SN of gp91phox-/- 6-OHDA lesioned mice, a likely mechanism whereby gp91phox-/- 6-OHDA lesioned mice may be more susceptible to develop PD after microglial cell inhibition. Nox2 adds an essential level of regulation to signaling pathways underlying the inflammatory response after PD induction