6 resultados para DHA

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Land degradation causes great changes in the soil biological properties. The process of degradation may decrease soil microbial biomass and consequently decrease soil microbial activity. The study was conducted out during 2009 and 2010 at the four sites of land under native vegetation (NV), moderately degraded land (LDL), highly degraded land (HDL) and land under restoration for four years (RL) to evaluate changes in soil microbial biomass and activity in lands with different degradation levels in comparison with both land under native vegetation and land under restoration in Northeast Brazil. Soil samples were collected at 0-10 cm depth. Soil organic carbon (SOC), soil microbial biomass C (MBC) and N (MBN), soil respiration (SR), and hydrolysis of fluorescein diacetate (FDA) and dehydrogenase (DHA) activities were analyzed. After two years of evaluation, soil MBC, MBN, FDA and DHA had higher values in the NV, followed by the RL. The decreases of soil microbial biomass and enzyme activities in the degraded lands were approximately 8-10 times as large as those found in the NV. However, after land restoration, the MBC and MBN increased approximately 5-fold and 2-fold, respectively, compared with the HDL. The results showed that land degradation produced a strong decrease in soil microbial biomass. However, land restoration may promote short- and long-term increases in soil microbial biomass.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND/OBJECTIVES: To assess the performance of a food frequency questionnaire (FFQ) for estimating omega-3, omega-6 and trans fatty acid intake during pregnancy. Moreover, we determined whether the fatty acid composition of mature breast milk represents a valuable biomarker for fatty acid intake during pregnancy. SUBJECTS/METHODS: A prospective study in 41 pregnant women, aged 18-35 years, was conducted. Food intake during pregnancy was evaluated by three 24-h recalls (24 hR), and 2 FFQ. The fatty acid composition of mature breast milk was determined by gas chromatography. The method of triads and joint classification between quartiles of intake were applied. RESULTS: The FFQ was accurate for estimating docosahexanoic (DHA), linoleic and total omega-6 fatty acids according to validity coefficients. Higher agreements (>70%) into the same or adjacent quartiles between the dietary methods were found for alpha-linolenic, total omega-3, linoleic and trans fatty acid intake. High validity coefficients for eicosapentanoic (EPA) and DHA acids of human milk were found (0.61 and 0.73, respectively), and the method was adequate for categorizing the intake of alpha-linolenic, total omega-3 and trans fatty acids compared with FFQ estimates, and for arachidonic acid and trans fatty acids compared with food recall estimates, during pregnancy. CONCLUSIONS: The FFQ was an accurate tool for categorizing alpha-linolenic, total omega-3 and trans fatty acid intake. According to the validity coefficients observed, the FFQ accurately estimated DHA, linoleic and total omega-6 fatty acids and the composition of mature breast milk was shown to be a suitable biomarker for EPA and DHA fatty acid intake during pregnancy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this study was to determine and compare the fatty acid (FA) composition of colostrum and mature milk produced by nursing mothers of preterm and at-term newborns, in Florianopolis, SC, Brazil. Low contents of Eicosapentaenoic acid (EPA) (0.02%/colostrum and 0.01%/mature milk for preterm and term milk) and Docosahexaenoic acid (DHA) (colostrum group: 0.10%/preterm and 0.09%/term; mature milk: 0.05%/preterm and 0.03%/term) were determined. The comparison among the groups showed that the elaidic acid content was significantly higher (1.67%) in mature term milk. The content of rumenic acid (conjugated linoleic acid) was significantly higher in at-term colostrum compared with preterm colostrum. When considering the maturity of the milk, there was a significant increase in the percentage of this FA in the preterm group. The results show that, overall, the greatest differences observed were between the colostrums and mature milks for both groups and not between preterm and at-term mothers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Abstract Background In an effort to identify new alternatives for long-chain n-3 polyunsaturated fatty acids (LC n-3 PUFA) supplementation, the effect of three sources of omega 3 fatty acids (algae, fish and Echium oils) on lipid profile and inflammation biomarkers was evaluated in LDL receptor knockout mice. Methods The animals received a high fat diet and were supplemented by gavage with an emulsion containing water (CON), docosahexaenoic acid (DHA, 42.89%) from algae oil (ALG), eicosapentaenoic acid (EPA, 19.97%) plus DHA (11.51%) from fish oil (FIS), and alpha-linolenic acid (ALA, 26.75%) plus stearidonic acid (SDA, 11.13%) from Echium oil (ECH) for 4 weeks. Results Animals supplemented with Echium oil presented lower cholesterol total and triacylglycerol concentrations than control group (CON) and lower VLDL than all of the other groups, constituting the best lipoprotein profile observed in our study. Moreover, the Echium oil attenuated the hepatic steatosis caused by the high fat diet. However, in contrast to the marine oils, Echium oil did not affect the levels of transcription factors involved in lipid metabolism, such as Peroxisome Proliferator Activated Receptor α (PPAR α) and Liver X Receptor α (LXR α), suggesting that it exerts its beneficial effects by a mechanism other than those observed to EPA and DHA. Echium oil also reduced N-6/N-3 FA ratio in hepatic tissue, which can have been responsible for the attenuation of steatosis hepatic observed in ECH group. None of the supplemented oils reduced the inflammation biomarkers. Conclusion Our results suggest that Echium oil represents an alternative as natural ingredient to be applied in functional foods to reduce cardiovascular disease risk factors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hundred forty-four Shaver White laying hens were used over a 4 week experimental period to investigate the effect of 3% of soybean oil, corn oil (MIL), canola oil, flaxseed oil (LIN), salmon oil (SAL) or tuna and sardine oil (SR/AT) added to the diets, upon the fatty acid egg yolk composition, blood plasma levels and incorporation time of each fatty acid into the egg yolk. Hens were allocated into 72 cages and the experimental design was a 6 x 6 randomized factorial model. Hens fed 3% of different oils, responded with increased polyunsaturated fatty acids omega 3 (ω-3 PUFAs), except for corn oil. The addition of flaxseed, soybean or corn oil into the diet increased the PUFAs levels into the egg yolk and in the blood plasma. Adding tuna and sardine oil into the diet increased the concentration of yolk saturated fatty acids. The levels of ω-3 PUFAs were increased in the tuna and sardine oil treatment, while the flaxseed oil increased the plasma fatty acids. The deposition of 349.28 mg/yolk of a-linolenic fatty acids (ALA) was higher in the group fed LIN, while the higher equal to 157.13 mg DHA/yolk was observed in group SR/AT. In the plasma, deposition increased from 0.33% (MIL) for 6.29% ALA (LIN), while that of DHA increase of 0.47% (MIL) for 4.24% (SAL) and 4.48% (SR/AT) and of 0.98% (MIL) for 6.14% (SR/AT) and 8.44% (LIN) of ω-3 PUFAs. The percentage of EPA into the yolk and plasma was higher for the hens fed 3% tuna and sardine oil diet, as well as the levels of yolk DHA. The concentration of DHA into the plasma was higher for the salmon and tuna/sardine oil treatments. The PUFAs yolk decreased during the first eight days of experiment, while the ω-3 PUFAs increased during the same period. The concentration of ALA increased until ten days of experiment, while the percentage of EPA and DHA increased up to the eighth experimental day

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two hundred eighty-eight 32-wk-old Hisex White laying hens were used in this research during a 10 weeks period, arranged in a 2 x 5 completely randomized factorial design, with three replicates of eight birds per treatment. Two groups: fish oil (OP) and Marine Algae (AM) with five DHA levels (120, 180, 240, 300 and 360 mg/100 g diet) were assigned including two control groups birds fed corn and soybean basal diet (CON) and a diet supplemented with AM (AM420) to study the effect of time 0, 2, 4, 6 and 8 weeks (wk) on the efficiency of egg yolk fatty acid enrichment. The means varied (p<0.01) of 17.63% (OP360) to 22.08% (AM420) is the total Polyunsaturated Fatty Acids (PUFAs) and 45.8 mg/g (OP360), 40.37 mg/g (OP360, 4 wk) to 65.82 mg/g (AM420) and 68.79 mg/g/yolk (AM120, 8 wk) for n-6 PUFAs. On the influence of sources and levels in the times, the means of n-3 PUFAs increased by 5.58 mg/g (AM120, 2 wk) to 14.16 mg/g (OP360, 6 wk) when compared to average of 3.34 mg PUFAs Ω/g/yolk (CON). Usually, the means DHA also increased from 22.34 (CON) to 176.53 mg (μ, OP360), 187.91 mg (OP360, 8 wk) and 192.96 mg (OP360, 6 wk) and 134.18 mg (μ, OP360), 135.79 mg (AM420, 6 wk), 149.75 mg DHA (AM420, 8 wk) per yolk. The opposite was observed for the means AA, so the effect of the sources, levels and times, decreased (P <0.01) of 99.83 mg (CON) to 31.99 mg (OP360, 4 wk), 40.43 mg (μ, OP360) to 61.21 mg (AM420) and 71.51 mg AA / yolk (μ, AM420). Variations of the average weight of 15.75g (OP360) to 17.08g (AM420) yolks of eggs de 32.55% (AM420) to 34.08% (OP360) of total lipids and 5.28 g (AM240) to 5.84 g (AM120) of fat in the yolk were not affected (p>0.05) by treatments, sources, levels and times studied. Starting of 2 week, the hens increased the level of n-3 PUFAs in the egg yolks, being expressively increased (p<0.01) until 4 weeks, which after the increased levels of n-3 PUFAs tended to if stabilize around of time of 8 experimental weeks, when it was more effective saturation of the tissues and yolk.