10 resultados para DENERVATION
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
To evaluate the feasibility, safety, and potential beneficial effects of left cardiac sympathetic denervation (LCSD) in systolic heart failure (HF) patients. In this prospective, randomized pilot study, inclusion criteria were New York Heart Association (NYHA) functional class II or III, left ventricular ejection fraction (LVEF) 40, sinus rhythm, and resting heart rate 65 b.p.m., despite optimal medical therapy (MT). Fifteen patients were randomly assigned either to MT alone or MT plus LCSD. The primary endpoint was safety, measured by mortality in the first month of follow-up and morbidity according to pre-specified criteria. Secondary endpoints were exercise capacity, quality of life, LVEF, muscle sympathetic nerve activity (MSNA), brain natriuretic peptide (BNP) levels and 24 h Holter mean heart rate before and after 6 months. We studied clinical effects in long-term follow-up. Ten patients underwent LCSD. There were no adverse events attributable to surgery. In the LCSD group, LVEF improved from 25 6.6 to 33 5.2 (P 0.03); 6 min walking distance improved from 167 35 to 198 47 m (P 0.02). Minnesota Living with Heart Failure Questionnaire (MLWHFQ) score physical dimension changed from 21 5 to 15 7 (P 0.06). The remaining analysed variables were unchanged. During 848 549 days of follow-up, in the MT group, three patients either died or underwent cardiac transplantation (CT), while in the LCSD group six were alive without CT. LCSD was feasible and seemed to be safe in systolic HF patients. Its beneficial effects warrant the development of a larger randomized trial. Trail registration: NCT01224899.
Resumo:
Blood pressure variability (BPV) and baroreflex dysfunction may contribute to end-organ damage process. We investigated the effects of baroreceptor deficit (10 weeks after sinoaortic denervation - SAD) on hemodynamic alterations, cardiac and pulmonary remodeling. Cardiac function and morphology of male Wistar intact rats (C) and SAD rats (SAD) (n = 8/group) were assessed by echocardiography and collagen quantification. BP was directly recorded. Ventricular hypertrophy was quantified by the ratio of left ventricular weight (LVW) and right ventricular weight (RVW) to body weight (BW). BPV was quantified in the time and frequency domains. The atrial natriuretic peptide (ANP), alpha-skeletal actin (alpha-skelectal), collagen type I and type III genes mRNA expression were evaluated by RT-PCR. SAD did not change BP, but increased BPV (11 +/- 0.49 vs. 5 +/- 0.3 mm Hg). As expected, baroreflex was reduced in SAD. Pulmonary artery acceleration time was reduced in SAD. In addition, SAD impaired diastolic function in both LV (6.8 +/- 0.26 vs. 5.02 +/- 0.21 mm Hg) and RV (5.1 +/- 0.21 vs. 4.2 +/- 0.12 mm Hg). SAD increased LVW/BW in 9% and RVW/BW in 20%, and augmented total collagen (3.8-fold in LV, 2.7-fold in RV, and 3.35-fold in pulmonary artery). Also, SAD increased type I (similar to 6-fold) and III (similar to 5-fold) collagen gene expression. Denervation increased ANP expression in LV (75%), in RV (74%) and increased a-skelectal expression in LV (300%) and in RV (546%). Baroreflex function impairment by SAD, despite not changing BP, induced important adjustments in cardiac structure and pulmonary hypertension. These changes may indicate that isolated baroreflex dysfunction can modulate target tissue damage. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Abstract Background In this study the effect of myenteric denervation induced by benzalconium chloride (BAC) on distribution of fibrillar components of extracellular matrix (ECM) and inflammatory cells was investigated in gastric carcinogenesis induced by N-methyl-N'-nitro-N-nitrosoguanidine (MNNG). Rats were divided in four experimental groups: non-denervated (I) and denervated stomach (II) without MNNG treatment; non-denervated (III) and denervated stomachs (IV) treated with MNNG. For histopathological, histochemical and stereological analysis, sections of gastric fragments were stained with Hematoxylin-Eosin, Picrosirius-Hematoxylin, Gomori reticulin, Weigert's Resorcin-Fuchsin, Toluidine Blue and Alcian-Blue/Safranin (AB-SAF). Results BAC denervation causes an increase in the frequency of reticular and elastic fibers in the denervated (group II) compared to the non-denervated stomachs (group I). The treatment of the animals with MNNG induced the development of adenocarcinomas in non-denervated and denervated stomachs (groups III and IV, respectively) with a notable increase in the relative volume of the stroma, the frequency of reticular fibers and the inflammatory infiltrate that was more intense in group IV. An increase in the frequency of elastic fibers was observed in adenocarcinomas of denervated (group IV) compared to the non-denervated stomachs (group III) that showed degradation of these fibers. The development of lesions (groups III and IV) was also associated with an increase in the mast cell population, especially AB and AB-SAF positives, the latter mainly in the denervated group IV. Conclusions The results show a strong association in the morphological alteration of the ECM fibrillar components, the increased density of mast cells and the development of tumors induced by MNNG in the non-denervated rat stomach or denervated by BAC. This suggests that the study of extracellular and intracellular components of tumor microenvironment contributes to understanding of tumor biology by action of myenteric denervation.
Resumo:
The aim of the present study was to investigate the participation of the sympathetic nervous system (SNS) in the control of glycerol-3-P (G3P) generating pathways in white adipose tissue (WAT) of rats in three situations in which the plasma insulin levels are low. WAT from 48 h fasted animals, 3 day-streptozotocin diabetic animals and high-protein, carbohydrate-free (HP) diet-fed rats was surgical denervated and the G3P generation pathways were evaluated. Food deprivation, diabetes and the HP diet provoke a marked decrease in the rate of glucose uptake and glycerokinase (GyK) activity, but a significant increase in the glyceroneogenesis, estimated by the phosphoenolpyruvate carboxykinase (PEPCK) activity and the incorporation of 1-[C-14]-pyruvate into glycerol-TAG. The denervation provokes a reduction (similar to 70%) in the NE content of WAT in fasted, diabetic and HP diet-fed rats. The denervation induced an increase in WAT glucose uptake of fed, fasted, diabetic and HP diet-fed rats (40%, 60%, 3.2 fold and 35%, respectively). TAG-glycerol synthesis from pyruvate was reduced by denervation in adipocytes of fed (58%) and fasted (36%), saline-treated (58%) and diabetic (23%), and HP diet-fed rats (11%). In these same groups the denervation reduced the PEPCK mRNA expression (75%-95%) and the PEPCK activity (35%-60%). The denervation caused a similar to 35% decrease in GyK activity of control rats and a further similar to 35% reduction in the already low enzyme activity of fasted, diabetic and HP diet-fed rats. These data suggest that the SNS plays an important role in modulating G3P generating pathways in WAT, in situations where insulin levels are low. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
The development of the percutaneous muscle biopsy technique is recognized as one of the most important scientific contributions in advancing our understanding of skeletal muscle physiology. However, a concern that this procedure may be associated with adverse events still exists. We reported the incidence of adverse outcomes associated with percutaneous muscle biopsy in healthy and diseased subjects. Medical records of 274 volunteers (496 muscle biopsies) were reviewed. This included 168 healthy subjects (330 muscle biopsies) as well as 106 chronically ill patients (166 muscle biopsies). This latter group encompassed patients with type II diabetes (n=28), osteoarthritis (n=39), inclusion body myositis (n=4), polymyositis (n=4), and chronic heart failure (n=31). The most common occurrences were pain (1.27%), erythema (1.27%), and ecchymosis (1.27%). Panic episode, bleeding, and edema were also reported (0.21%, 0.42%, and 0.84%, respectively), while infection, hematoma, inflammation, denervation, numbness, atrophy, and abnormal scarring were not verified. The percent of incidents did not differ between healthy and ill individuals. In conclusion, the incidence of complications associated with percutaneous muscle biopsy is scarce and of minor clinical relevance. Additionally, the rate of adverse events is comparable between healthy and chronically ill subjects.
Resumo:
Goncalves DA, Silveira WA, Lira EC, Gra a FA, Paula-Gomes S, Zanon NM, Kettelhut IC, Navegantes LC. Clenbuterol suppresses proteasomal and lysosomal proteolysis and atrophy-related genes in denervated rat soleus muscles independently of Akt. Am J Physiol Endocrinol Metab 302: E123-E133, 2012. First published September 27, 2011; doi:10.1152/ajpendo.00188.2011.-Although it is well known that administration of the selective beta(2)-adrenergic agonist clenbuterol (CB) protects muscle following denervation (DEN), the underlying molecular mechanism remains unclear. We report that in vivo treatment with CB (3 mg/kg sc) for 3 days induces antiproteolytic effects in normal and denervated rat soleus muscle via distinct mechanisms. In normal soleus muscle, CB treatment stimulates protein synthesis, inhibits Ca(2+)-dependent proteolysis, and increases the levels of calpastatin protein. On the other hand, the administration of CB to DEN rats ameliorates the loss of muscle mass, enhances the rate of protein synthesis, attenuates hyperactivation of proteasomal and lysosomal proteolysis, and suppresses the transcription of the lysosomal protease cathepsin L and of atrogin-1/MAFbx and MuRF1, two ubiquitin (Ub) ligases involved in muscle atrophy. These effects were not associated with alterations in either IGF-I content or Akt phosphorylation levels. In isolated muscles, CB (10(-6) M) treatment significantly attenuated DEN-induced overall proteolysis and upregulation in the mRNA levels of the Ub ligases. Similar responses were observed in denervated muscles exposed to 6-BNZ-cAMP (500 mu M), a PKA activator. The in vitro addition of triciribine (10 mu M), a selective Akt inhibitor, did not block the inhibitory effects of CB on proteolysis and Ub ligase mRNA levels. These data indicate that short-term treatment with CB mitigates DEN-induced atrophy of the soleus muscle through the stimulation of protein synthesis, downregulation of cathepsin L and Ub ligases, and consequent inhibition of lysosomal and proteasomal activities and that these effects are independent of Akt and possibly mediated by the cAMP/PKA signaling pathway.
Resumo:
Objectives. Adductor spasmodic dysphonia (ADSD) is a focal laryngeal dystonia, which compromises greatly the quality of life of the patients involved. It is a severe vocal disorder characterized by spasms of laryngeal muscles during speech, producing phonatory breaks, forced, strained and strangled voice. Its symptoms result from involuntary and intermittent contractions of thyroarytenoid muscle during speech, which causes vocal fold to strain, pressing each vocal fold against the other and increasing glottic resistance. Botulinum toxin injection remains the gold-standard treatment. However, as injections should be repeated periodically leading to voice quality instability, a more definitive procedure would be desirable. In this pilot study we report the long-term vocal quality results of endoscopic laser thyroarytenoid myoneurectomy. Study Design. Prospective study. Methods. Surgery was performed in 15 patients (11 females and four males), aged between 29 and 73 years, diagnosed with ADSD. Voice Handicap Index (VHI) was obtained before and after surgery (median 31 months postoperatively). Results. A significant improvement in VHI was observed after surgery, as compared with baseline values (P = 0.001). The median and interquartile range for preoperative VHI was 99 and 13, respectively and 24 and 42, for postoperative VHI. Subjective improvement of voice as assessed by the patients showed median improvement of 80%. Conclusions. Because long-term follow-up showed significant improvement of voice quality, this innovative surgical technique seems a satisfactory alternative treatment of ADSD patients who seek a definite improvement of their condition.
Resumo:
The effects of deep brain stimulation of the subthalamic nucleus on nonmotor symptoms of Parkinson's disease (PD) rarely have been investigated. Among these, sensory disturbances, including chronic pain (CP), are frequent in these patients. The aim of this study was to evaluate the changes induced by deep brain stimulation in the perception of sensory stimuli, either noxious or innocuous, mediated by small or large nerve fibers. Sensory detection and pain thresholds were assessed in 25 PD patients all in the off-medication condition with the stimulator turned on or off (on- and off-stimulation conditions, respectively). The relationship between the changes induced by surgery on quantitative sensory testing, spontaneous CP, and motor abilities were studied. Quantitative sensory test results obtained in PD patients were compared with those of age-matched healthy subjects. Chronic pain was present in 72% of patients before vs 36% after surgery (P = .019). Compared with healthy subjects, PD patients had an increased sensitivity to innocuous thermal stimuli and mechanical pain, but a reduced sensitivity to innocuous mechanical stimuli. In addition, they had an increased pain rating when painful thermal stimuli were applied, particularly in the off-stimulation condition. In the on-stimulation condition, there was an increased sensitivity to innocuous thermal stimuli but a reduced sensitivity to mechanical or thermal pain. Pain provoked by thermal stimuli was reduced when the stimulator was turned on. Motor improvement positively correlated with changes in warm detection and heat pain thresholds. Subthalamic nucleus deep brain stimulation contributes to relieve pain associated with PD and specifically modulates small fiber-mediated sensations. (C) 2012 International Association for the Study of Pain. Published by Elsevier B. V. All rights reserved.
Resumo:
Objectives: Current data do not provide enough information on how quality of life (QoL) evolves over time in cases of endoscopic thoracic sympathectomy (ETS). The purpose of this study was to ascertain whether the immediate improvement in QoL after the surgery was sustained until the fifth postoperative year. Methods: This was a prospective, nonrandomized and uncontrolled study. From March 2001 to December 2003, 475 consecutive patients with hyperhidrosis submitted to ETS were included. A QoL questionnaire was applied at the preoperative day, around the 30th postoperative day, and after the fifth year. Results: After excluding 22 patients who did not answer all the questions, we analyzed 453 patients. Their ages ranged from 11 to 57 years old, with a mean of 25.3 + 7.9 years, including 297 female patients (65.6%). All patients were assessed on three occasions: before surgery, around the 30th postoperative day, and after the fifth postoperative year. The QoL before surgery was considered to be poor or very poor for all patients. The QoL around 30 days after surgery was better in 412 patients (90.9%), the same in 27 patients (6.0%), and worse in 14 patients (3.1%). After 5 years, 409 patients (90.3%) were better, 27 (6.0%) were the same, and 14 (3.1%) were worse. There were no differences between these postoperative times according to the McNemar statistical test. Conclusion:The patients had an immediate improvement in QoL after ETS, and this improvement was sustained until the fifth postoperative year. (J Vase Surg 2012;55:154-6.)
Resumo:
Salivary gland function is regulated by both the sympathetic and parasympathetic nervous systems. Previously we showed that the basal sympathetic outflow to the salivary glands (SNA(SG)) was higher in hypertensive compared to normotensive rats and that diabetes reduced SNA(SG) discharge at both strains. In the present study we sought to investigate how SNA(SG) might be modulated by acute changes in the arterial pressure and whether baroreceptors play a functional role upon this modulation. To this end, we measured blood pressure and SNA(SG) discharge in Wistar-Kyoto rats (WRY-intact) and in WRY submitted to sinoaortic denervation (WRY-SAD). We made the following three major observations: (i) in WRY-intact rats, baroreceptor loading in response to intravenous infusion of the phenylephrine evoked an increase in SNA(SG) spike frequency (81%, p<0.01) accompanying the increase mean arterial pressure ((sic)MAP: +77 +/- 14 mmHg); (ii) baroreceptor unloading with sodium nitroprusside infusion elicited a decrease in SNA(SG) spike frequency (17%, p<0.01) in parallel with the fall in arterial blood pressure ((sic)MAP: 30 3 mmHg) in WRY-intact rats; iii) in the WRY-SAD rats, phenylephrine-evoked rises in the arterial pressure ((sic)MAP: +56 +/- 6 mmHg) failed to produce significant changes in the SNA(SG) spike frequency. Taken together, these data show that SNA(SG) increases in parallel with pharmacological-induced pressor response in a baroreceptor dependent way in anaesthetised rats. Considering the key role of SNA(SG) in salivary secretion, this mechanism, which differs from the classic cardiac baroreflex feedback loop, strongly suggests that baroreceptor signalling plays a decisive role in the regulation of salivary gland function. (C) 2012 Elsevier Inc. All rights reserved.