8 resultados para Crack initiation stress

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objectives. To verify the hypothesis that crack analysis and a mechanical test would rank a series of composites in a similar order with respect to polymerization stress. Also, both tests would show similar relationships between stress and composite elastic modulus and/or shrinkage. Methods. Soda-lime glass discs (2-mm thick) with a central perforation (3.5-mm diameter) received four Vickers indentations 500 mu m from the cavity margin. The indent cracks were measured (500x) prior and 10 min after the cavity was restored with one of six materials (Kalore/KL, Gradia/GR, Ice/IC, Wave/WV, Majesty Flow/MF, and Majesty Posterior/MP). Stresses at the indent site were calculated based on glass fracture toughness and increase in crack length. Stress at the bonded interface was calculated using the equation for an internally pressurized cylinder. The mechanical test used a universal testing machine and glass rods (5-mm diameter) as substrate. An extensometer monitored specimen height (2 mm). Nominal stress was calculated dividing the maximum shrinkage force by the specimen cross-sectional area. Composite elastic modulus was determined by nanoindentation and post-gel shrinkage was measured using strain gages. Data were subjected to one-way ANOVA/Tukey or Kruskal-Wallis/Mann-Whitney tests (alpha: 5%). Results. Both tests grouped the composites in three statistical subsets, with small differences in overlapping between the intermediate subset (MF, WV) and the highest (MP, IC) or the lowest stress materials (KL, GR). Higher stresses were developed by composites with high modulus and/or high shrinkage. Significance. Crack analysis demonstrated to be as effective as the mechanical test to rank composites regarding polymerization stress. (c) 2012 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aims of this work are: (i) to produce new experimental data for fretting fatigue considering the presence of a mean bulk stress and (ii) to assess two design methodologies against failure by fretting fatigue. Tests on a cylinder–flat contact configuration were conducted using a fretting apparatus mounted on a servo-hydraulic machine. The material used for both the pads and fatigue specimen was an aeronautical 7050-T7451 Al alloy. The experimental program was designed with all relevant parameters, apart from the mean bulk load (always applied before the contact loads), kept constant. The mean bulk stress varied from compressive to tensile values while maintaining a high peak pressure in order to encourage crack initiation. Two methodologies against fretting fatigue are proposed and confronted against the experimental data. The non-local stress-based methodology considers the evaluation of a critical plane fatigue criterion at the center of a process zone located beneath the contacting surfaces. The results showed that it correctly predicts crack initiation, but was not capable to provide successful prediction of the integrity of the specimens. Alternatively, we considered a crack arrest criterion which has the potential to provide a more complete description about the integrity of the specimens.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Aim. This work tested the effect of the addition of Al2O3/GdAlO3 longitudinal fibers in different contents to veneering porcelain of two dental all ceramic systems. Methods: Fibers (0.5 mm diameter) obtained by the Laser Heated Pedestal Growth (LHPG) method were added to bar-shaped specimens made by veneer porcelain (monolayers) or both the veneer and the core ceramic (bilayers) of two all-ceramic systems: In-Ceram Alumina - glass infiltrated alumina composite (GIA) and In-Ceram 2000 AL Cubes - alumina polycrystal (AP) (VITA Zahnfabrik). The longitudinal fibers were added to veneering porcelain (VM7) in two different proportions: 10 or 17 vol%. The bars were divided into nine experimental conditions (n = 10) according to material used: VM7 porcelain monolayers, VM7/GIA, VM7/AP; and according to the amount of fibers within the porcelain layer: no fibers, 10 vol% or 17 vol%. After grinding and polishing the specimens were submitted to a three point bending test (crosshead speed = 0.5 mm/min) with porcelain positioned at tensile side. Data were analyzed by means of one-way ANOVA and a Tukey's test (alpha = 5%). Scanning electronic microscopy (SEM) was conducted for fractographic analysis. Results. Regarding the groups without fiber addition, VM7/AP showed the highest flexural strength (MPa), followed by VM7/GIA and VM7 monolayers. The addition of fibers led to a numerical increase in flexural strength for all groups. For VM7/GIA bilayers the addition of 17 vol% of fibers resulted in a significant 48% increase in the flexural strength compared to the control group. Fractographic analysis revealed that the crack initiation site was in porcelain at the tensile surface. Cracks also propagated between fibers before heading for the alumina core. Conclusions. The addition of 17 vol% of Al2O3/GdAlO3 longitudinal fibers to porcelain/glass infiltrated alumina bilayers significantly improved its flexural strength. 10 vol% or 17 vol% of fibers inclusion increased the flexural strength for all groups. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Smoking crack cocaine involves the inhalation of cocaine and its pyrolysis product, anhydroecgonine methyl ester (AEME). Although there is evidence that cocaine is neurotoxic, the neurotoxicity of AEME has never been evaluated. AEME seems to have cholinergic agonist properties in the cardiovascular system; however, there are no reports on its effects in the central nervous system. The aim of this study was to investigate the neurotoxicity of AEME and its possible cholinergic effects in rat primary hippocampal cell cultures that were exposed to different concentrations of AEME, cocaine, and a cocaineAEME combination. We also evaluated the involvement of muscarinic cholinergic receptors in the neuronal death induced by these treatments using concomitant incubation of the cells with atropine. Neuronal injury was assessed using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and lactate dehydrogenase (LDH) assays. The results of the viability assays showed that AEME is a neurotoxic agent that has greater neurotoxic potential than cocaine after 24 and 48 h of exposure. We also showed that incubation for 48 h with a combination of both compounds in equipotent concentrations had an additive neurotoxic effect. Although both substances decreased cell viability in the MTT assay, only cocaine increased LDH release. Caspase-3 activity was increased after 3 and 6 h of incubation with 1mM cocaine and after 6 h of 0.1 and 1.0mM AEME exposure. Atropine prevented the AEME-induced neurotoxicity, which suggests that muscarinic cholinergic receptors are involved in AEME's effects. In addition, binding experiments confirmed that AEME has an affinity for muscarinic cholinergic receptors. Nevertheless, atropine was not able to prevent the neurotoxicity produced by cocaine and the cocaineAEME combination, suggesting that these treatments activated other neuronal death pathways. Our results suggest a higher risk for neurotoxicity after smoking crack cocaine than after cocaine use alone.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objectives. Verify the influence of different filler distributions on the subcritical crack growth (SCG) susceptibility, Weibull parameters (m and sigma(0)) and longevity estimated by the strength-probability-time (SPT) diagram of experimental resin composites. Methods. Four composites were prepared, each one containing 59 vol% of glass powder with different filler sizes (d(50) = 0.5; 0.9; 1.2 and 1.9 mu m) and distributions. Granulometric analyses of glass powders were done by a laser diffraction particle size analyzer (Sald-7001, Shimadzu, USA). SCG parameters (n and sigma(f0)) were determined by dynamic fatigue (10(-2) to 10(2) MPa/s) using a biaxial flexural device (12 x 1.2 mm; n = 10). Twenty extra specimens of each composite were tested at 10(0) MPa/s to determine m and sigma(0). Specimens were stored in water at 37 degrees C for 24 h. Fracture surfaces were analyzed under SEM. Results. In general, the composites with broader filler distribution (C0.5 and C1.9) presented better results in terms of SCG susceptibility and longevity. C0.5 and C1.9 presented higher n values (respectively, 31.2 +/- 6.2(a) and 34.7 +/- 7.4(a)). C1.2 (166.42 +/- 0.01(a)) showed the highest and C0.5 (158.40 +/- 0.02(d)) the lowest sigma(f0) value (in MPa). Weibull parameters did not vary significantly (m: 6.6 to 10.6 and sigma(0): 170.6 to 176.4 MPa). Predicted reductions in failure stress (P-f = 5%) for a lifetime of 10 years were approximately 45% for C0.5 and C1.9 and 65% for C0.9 and C1.2. Crack propagation occurred through the polymeric matrix around the fillers and all the fracture surfaces showed brittle fracture features. Significance. Composites with broader granulometric distribution showed higher resistance to SCG and, consequently, higher longevity in vitro. (C) 2012 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The fatigue crack behavior in metals and alloys under constant amplitude test conditions is usually described by relationships between the crack growth rate da/dN and the stress intensity factor range Delta K. In the present work, an enhanced two-parameter exponential equation of fatigue crack growth was introduced in order to describe sub-critical crack propagation behavior of Al 2524-T3 alloy, commonly used in aircraft engineering applications. It was demonstrated that besides adequately correlating the load ratio effects, the exponential model also accounts for the slight deviations from linearity shown by the experimental curves. A comparison with Elber, Kujawski and "Unified Approach" models allowed for verifying the better performance, when confronted to the other tested models, presented by the exponential model. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract Background Cocaine abuse is a serious and socially damaging illegal drug problem. Different routes of administration are associated with a specific progression of use, different degrees of abuse liability, propensity for dependence and treatment response. There have been relatively few studies comparing different cocaine users groups and no studies into the characterization of the group of individuals reporting concurrent use of powder cocaine and crack cocaine. Methods Six hundred and ninety-nine cocaine users were assessed during the period August 1997 to October 1998 in one outpatient and six inpatient clinics located in the São Paulo, Brazil. Patients were interviewed using a structured questionnaire schedule in Portuguese, designed specifically for the Brazilian population. The statistical analyses were performed using either ANOVA or a chi-squared test and focusing on their preferred form of use/route of administration and other variables. Results For 83% of the variables tested in this study, the Dual Users subgroup (using both powder and crack cocaine) demonstrated statistical differences from the single drug user subgroups. Those differences include the initiation of cocaine, the abuse of other illicit drugs, and rates of criminal history. Conclusion These data suggest cocaine-dependent individuals who report use of both powder and crack cocaine are an at least partially, distinct subgroup. However, further studies will be necessary to confirm this and to determine if they also show a different treatment response.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work provides a numerical and experimental investigation of fatigue crack growth behavior in steel weldments including crack closure effects and their coupled interaction with weld strength mismatch. A central objective of this study is to extend previously developed frameworks for evaluation of crack clo- sure effects on FCGR to steel weldments while, at the same time, gaining additional understanding of commonly adopted criteria for crack closure loads and their influence on fatigue life of structural welds. Very detailed non-linear finite element analyses using 3-D models of compact tension C ( T ) fracture spec- imens with center cracked, square groove welds provide the evolution of crack growth with cyclic stress intensity factor which is required for the estimation of the closure loads. Fatigue crack growth tests con- ducted on plane-sided, shallow-cracked C ( T ) specimens provide the necessary data against which crack closure effects on fatigue crack growth behavior can be assessed. Overall, the present investigation pro- vides additional support for estimation procedures of plasticity-induced crack closure loads in fatigue analyses of structural steels and their weldments