4 resultados para Continuum Model

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The hydration of mesityl oxide (MOx) was investigated through a sequential quantum mechanics/molecular mechanics approach. Emphasis was placed on the analysis of the role played by water in the MOx syn-anti equilibrium and the electronic absorption spectrum. Results for the structure of the MOx-water solution, free energy of solvation and polarization effects are also reported. Our main conclusion was that in gas-phase and in low-polarity solvents, the MOx exists dominantly in syn-form and in aqueous solution in anti-form. This conclusion was supported by Gibbs free energy calculations in gas phase and in-water by quantum mechanical calculations with polarizable continuum model and thermodynamic perturbation theory in Monte Carlo simulations using a polarized MOx model. The consideration of the in-water polarization of the MOx is very important to correctly describe the solute-solvent electrostatic interaction. Our best estimate for the shift of the pi-pi* transition energy of MOx, when it changes from gas-phase to water solvent, shows a red-shift of -2,520 +/- 90 cm(-1), which is only 110 cm(-1) (0.014 eV) below the experimental extrapolation of -2,410 +/- 90 cm(-1). This red-shift of around -2,500 cm(-1) can be divided in two distinct and opposite contributions. One contribution is related to the syn -> anti conformational change leading to a blue-shift of similar to 1,700 cm(-1). Other contribution is the solvent effect on the electronic structure of the MOx leading to a red-shift of around -4,200 cm(-1). Additionally, this red-shift caused by the solvent effect on the electronic structure can by composed by approximately 60 % due to the electrostatic bulk effect, 10 % due to the explicit inclusion of the hydrogen-bonded water molecules and 30 % due to the explicit inclusion of the nearest water molecules.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We present effective-mass calculations of the bound-state energy levels of electrons confined inside lens-shaped InxGa1-xAs quantum dots (QDs) embedded in a GaAs matrix, taking into account the strain as well as the In gradient inside the QDs due to the strong In segregation and In-Ga intermixing present in the InxGa1-xAs/GaAs system. In order to perform the calculations, we used a continuum model for the strain, and the QDs and wetting layer were divided into their constituting monolayers, each one with a different In concentration, to be able to produce a specific composition profile. Our results clearly show that the introduction of such effects is very important if one desires to correctly reproduce or predict the optoelectronic properties of these nanostructures.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Experimental and theoretical studies on the two-photon absorption properties of two oxazole derivatives: 2,5-diphenyloxazole (PPO) and 2-(4-biphenylyI)-5-phenyl-1,3,4-oxadiazole (PBD) are presented. The two-photon absorption cross-section spectra were determined by means of the Z-scan technique, from 460 up to 650 nm, and reached peak values of 84 GM for PBD and 27 GM for PPO. Density Functional Theory and response function formalism are used to determine the molecular structures and the one- and two-photon absorption properties and to assist in the interpretation of the experimental results. The Polarizable Continuum Model in one-photon absorption calculations is used to estimate solvent effects. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The first stage of the photosynthetic process is the extraordinary efficiency of sunlight absorption in the visible region [1]. This region corresponds to the maximum of the spectral radiance of the solar emission. The efficient absorption of visible light is one of the most important characteristics of photosynthetic pigments. In chlorophylls, for example, the absorptions are seen as a strong absorption in the region 400-450 nm in connection with other absorptions with small intensities in the region of 500-600 nm. This work aims at understanding the essential features of the absorption spectrum of photosynthetic pigments, in line with several theoretical studies in the literature [2, 3]. The absorption spectra were calculated for H2-Porphyrin, Mg-Porphyrin, and Zn-Porphyrin, and for H2-Phthalocyanine and Mg-Phthalocyanine with and without the four peripheral eugenol substituents. The geometries were optimized using the B3LYP/6-31+G(d) theoretical model. For the calculation of the absorption spectra different TD-DFT calculations were performed (B3LYP, CAM-B3LYP, O3LYP, M06-2X and BP86) along with CIS (D). For the spectra the basis set 6-311++G (d, p) was used for porphyrins and 6-31+G (d) was used for the other systems. At this stage the solvent effects were considered using the simplified continuum model (PCM). First a comparison between the results using the different methods was made. For the porphyrins the best results compared to experiment (both in position and intensities) are obtained with M06-2X and CIS (D). We also analyze the compatibility of the four-orbital model of Gouterman [4] that states that transitions could be well described by the HOMO-1, HOMO, LUMO, and LUMO+1 molecular orbitals. Our results for H2-Porphyrin shows an agreement with other theoretical results and experimental data [5]. For the phthalocyanines (including the four peripheral eugenol substituents) the results are also in good agreement compared with the experimental results given in ref [6]. Finally, the results show that the inclusion of solvent eÆects gives corrections for the spectral shift in the correct direction but numerically small. References [1] R.E. Blankenship; “Molecular Mechanisms of Photosynthesis", Blackwell Science (2002). [2] P. Jaramillo, K. Coutinho, B.J.C. Cabral and S. Canuto; Chem. Phys. Lett., 516, 250(2011). [3] L. Petit, A. Quartarolo, C. Adamo and N. Russo; J. Phys. Chem. B, 110, 2398(2006). [4] M. J. Gouterman; Mol. Spectr., 6, 138(1961). [5] M. Palummo, C. Hogan, F. Sottile, P. Bagal∂a and A. Rubio; J. Chem. Phys., 131, 084102(2009). [6] E. Agar, S. Sasmaz and A. Agar; Turk. J. Chem., 23, 131(1999).