3 resultados para Conon, fl. 36 B.C.-17 A.D.

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We use the QCD sum rules to study possible B-c-like molecular states. We consider isoscalar J(P) = 0(+) and J(P) = 1(+) D(*) B(*) molecular currents. We consider the contributions of condensates up to dimension eight and we work at leading order in alpha(s). We obtain for these states masses around 7 GeV. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We hypothesized that bone marrow-derived mononuclear cell (BMDMC) therapy protects the lung and consequently the heart in experimental elastase-induced emphysema. Twenty-four female C57BL/6 mice were intratracheally instilled with saline (C group) or porcine pancreatic elastase (E group) once a week during 4 weeks. C and E groups were randomized into subgroups receiving saline (SAL) or male BMDMCs (2 x 10(6), CELL) intravenously 3 h after the first saline or elastase instillation. Compared to E-SAL group, E-CELL mice showed, at 5 weeks: lower mean linear intercept, neutrophil infiltration, elastolysis, collagen fiber deposition in alveolar septa and pulmonary vessel wall, lung cell apoptosis, right ventricle wall thickness and area, higher endothelial growth factor and insulin-like growth factor mRNA expressions in lung tissue, and reduced platelet-derived growth factor, transforming growth factor-beta, and caspase-3 expressions. In conclusion, BMDMC therapy was effective at modulating the inflammatory and remodeling processes in the present model of elastase-induced emphysema. (c) 2012 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

RATIONALE: The interaction between lungs and chest wall influences lung volume, that determines lung history during respiration cycle. In this study, the influence of chest wall mechanics on respiratory system is assessed by the evaluation of inspiration pressure-volume curve (PV curve) under three different situations: closed-chest, open-chest and isolated lung. The PV curve parameters in each situation allow us to further understand the role played by different chest wall elements in the respiratory function. Methods: Twenty-four male Wistar rats (236 ± 29 g) were used. The animals were weighted and then anesthetized with xylazine 2% (0,5mL/kg) and ketamine 10% (0,9mL/kg), exsanguinated and later tracheostomized with a metallic cannula (14 gauge). The cannula was connected to an automatic small animal insufflator. This setup was connected to a pressure transducer (32 samples/s). The 24 animals were randomly separated in three groups: (i) closed chest, (ii) open chest and (iii) isolated lung. The rats were insufflated with 20mL quasi-statically (constant speed of 0,1mL/s). Insufflated volume and measured pressure data were kept and PV curves were obtained for all animals. The PV curves were fitted (non-linear least squares) against the sigmoid equation (1) to obtain the sigmoid equation parameters (a,b,c,d). Elastance measurements were obtained from linear regression of pressure/volume measurements in a 0,8s interval before and after the calculated point. Results: The parameters a, b and c showed no significant change, but the parameter d showed a significant variation among the three groups. The initial elastance also varied between open and closed chest, indicating the need of a higher pressure for the lung expansion, as can be seen in Table 1. Table 1: Mean and Standard Deviation of parameters obtained for each protocol. Protocol: Closed Chest – a (mL) -0.35±0.33; b (mL) 13.93±0.89; c (cm H2O) 21.28±2.37; d (cm H2O) 6.17±0.84; r²** (%) 99.4±0.14; Initial Elastance* (cm H2)/mL) 12.72±6.66; Weight (g) 232.33±5.72. Open Chest - a (mL) 0.01±0.28; b (mL) 14.79±0.54; c (cm H2O) 19.47±1.41; d (cm H2O) 3.50±0.28; r²** (%) 98.8±0.34; Initial Elastance* (cm H2)/mL) 28.68±2.36; Weight (g) 217.33±7.97. Isolated Lung - a (mL) -0.09±0.46; b (mL) 14.22±0.75; c (cm H2O) 21.76±1.43; d (cm H2O) 4.24±0.50; r²** (%) 98.9±0.19; Initial Elastance* (cm H2)/mL) 7.13±8.85; Weight (g) 224.33±16.66. * Elastance measures in the 0-0,1 mL range. ** Goodness of sigmoid fit versus measured data Conclusion: A supporting effect of the chest wall was observed at the initial moments of inspiration, observed as a higher initial elastance in open chest situations than in closed chest situations (p=0,00001). The similar initial elastance for the isolated lung and closed chest may be explained by the specific method used for the isolated lung experiment. As the isolated lung is supported by the trachea vertically, the weight of the tissue may have a similar effect of the residual negative pressure in the thorax, responsible for maintaining the residual volume.