12 resultados para Computational learning theory
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
A análise detalhada de Mapas Conceituais (MCs) pode revelar informações latentes que não são percebidas a partir da mera leitura do seu conjunto de proposições. O presente trabalho tem como objetivo propor a Análise de Vizinhança (AViz) como uma forma inovadora de avaliar os MCs obtidos em sala de aula. A seleção de um Conceito Obrigatório (CO) permite ao professor verificar como os alunos o relacionam com outros conceitos, os quais são classificados como Conceitos Vizinhos (CVs). As proposições estabelecidas entre o CO e os CVs são suficientes para indicar o nível de compreensão do aluno sobre o tema mapeado. MCs (n = 69) sobre mudanças climáticas formam o primeiro conjunto de dados empíricos que ratifica o potencial da AViz. O CO selecionado foi dispersão, a fim de avaliar se os alunos conseguem relacionar esse fenômeno físico com o caráter global desse problema ambiental. Os padrães identificados a partir da AViz sugerem que, apesar de serem submetidos a uma mesma sequência didática, nem todos os alunos conseguiram utilizar o CO de forma adequada. Isso pode ser explicado a partir da Teoria da Aprendizagem Significativa de David Ausubel, que destaca o papel fundamental dos conhecimentos prévios no processo de assimilação de novas informações.
Resumo:
Competitive learning is an important machine learning approach which is widely employed in artificial neural networks. In this paper, we present a rigorous definition of a new type of competitive learning scheme realized on large-scale networks. The model consists of several particles walking within the network and competing with each other to occupy as many nodes as possible, while attempting to reject intruder particles. The particle's walking rule is composed of a stochastic combination of random and preferential movements. The model has been applied to solve community detection and data clustering problems. Computer simulations reveal that the proposed technique presents high precision of community and cluster detections, as well as low computational complexity. Moreover, we have developed an efficient method for estimating the most likely number of clusters by using an evaluator index that monitors the information generated by the competition process itself. We hope this paper will provide an alternative way to the study of competitive learning.
Resumo:
Semisupervised learning is a machine learning approach that is able to employ both labeled and unlabeled samples in the training process. In this paper, we propose a semisupervised data classification model based on a combined random-preferential walk of particles in a network (graph) constructed from the input dataset. The particles of the same class cooperate among themselves, while the particles of different classes compete with each other to propagate class labels to the whole network. A rigorous model definition is provided via a nonlinear stochastic dynamical system and a mathematical analysis of its behavior is carried out. A numerical validation presented in this paper confirms the theoretical predictions. An interesting feature brought by the competitive-cooperative mechanism is that the proposed model can achieve good classification rates while exhibiting low computational complexity order in comparison to other network-based semisupervised algorithms. Computer simulations conducted on synthetic and real-world datasets reveal the effectiveness of the model.
Resumo:
Several recent studies in literature have identified brain morphological alterations associated to Borderline Personality Disorder (BPD) patients. These findings are reported by studies based on voxel-based-morphometry analysis of structural MRI data, comparing mean gray-matter concentration between groups of BPD patients and healthy controls. On the other hand, mean differences between groups are not informative about the discriminative value of neuroimaging data to predict the group of individual subjects. In this paper, we go beyond mean differences analyses, and explore to what extent individual BPD patients can be differentiated from controls (25 subjects in each group), using a combination of automated-morphometric tools for regional cortical thickness/volumetric estimation and Support Vector Machine classifier. The approach included a feature selection step in order to identify the regions containing most discriminative information. The accuracy of this classifier was evaluated using the leave-one-subject-out procedure. The brain regions indicated as containing relevant information to discriminate groups were the orbitofrontal, rostral anterior cingulate, posterior cingulate, middle temporal cortices, among others. These areas, which are distinctively involved in emotional and affect regulation of BPD patients, were the most informative regions to achieve both sensitivity and specificity values of 80% in SVM classification. The findings suggest that this new methodology can add clinical and potential diagnostic value to neuroimaging of psychiatric disorders. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
This is a research paper in which we discuss “active learning” in the light of Cultural-Historical Activity Theory (CHAT), a powerful framework to analyze human activity, including teaching and learning process and the relations between education and wider human dimensions as politics, development, emancipation etc. This framework has its origin in Vygotsky's works in the psychology, supported by a Marxist perspective, but nowadays is a interdisciplinary field encompassing History, Anthropology, Psychology, Education for example.
Resumo:
Semi-supervised learning is one of the important topics in machine learning, concerning with pattern classification where only a small subset of data is labeled. In this paper, a new network-based (or graph-based) semi-supervised classification model is proposed. It employs a combined random-greedy walk of particles, with competition and cooperation mechanisms, to propagate class labels to the whole network. Due to the competition mechanism, the proposed model has a local label spreading fashion, i.e., each particle only visits a portion of nodes potentially belonging to it, while it is not allowed to visit those nodes definitely occupied by particles of other classes. In this way, a "divide-and-conquer" effect is naturally embedded in the model. As a result, the proposed model can achieve a good classification rate while exhibiting low computational complexity order in comparison to other network-based semi-supervised algorithms. Computer simulations carried out for synthetic and real-world data sets provide a numeric quantification of the performance of the method.
Resumo:
Discusses the technological changes that affects learning organizations as well as the human, technical, legal and sustainable aspects regarding learning objects repositories creation, maintenance and use. It presents concepts of information objects and learning objects, the functional requirements needed to their storage at Learning Management Systems. The role of Metadata is reviewed concerning learning objects creation and retrieval, followed by considerations about learning object repositories models, community participation/collaborative strategies and potential derived metrics/indicators. As a result of this desktop research, it can be said that not only technical competencies are critical to any learning objects repository implementation, but it urges that an engaged community of interest be establish as a key to support a learning object repository project. On that matter, researchers are applying Activity Theory (Vygostky, Luria y Leontiev) in order to seek joint perceptions and actions involving learning objects repository users, curators and managers, perceived as critical assets to a successful proposal.
Resumo:
In this paper, we address the problem of defining the product mix in order to maximise a system's throughput. This problem is well known for being NP-Complete and therefore, most contributions to the topic focus on developing heuristics that are able to obtain good solutions for the problem in a short CPU time. In particular, constructive heuristics are available for the problem such as that by Fredendall and Lea, and by Aryanezhad and Komijan. We propose a new constructive heuristic based on the Theory of Constraints and the Knapsack Problem. The computational results indicate that the proposed heuristic yields better results than the existing heuristic.
Resumo:
This work evaluates the efficiency of economic levels of theory for the prediction of (3)J(HH) spin-spin coupling constants, to be used when robust electronic structure methods are prohibitive. To that purpose, DFT methods like mPW1PW91. B3LYP and PBEPBE were used to obtain coupling constants for a test set whose coupling constants are well known. Satisfactory results were obtained in most of cases, with the mPW1PW91/6-31G(d,p)//B3LYP/6-31G(d,p) leading the set. In a second step. B3LYP was replaced by the semiempirical methods PM6 and RM1 in the geometry optimizations. Coupling constants calculated with these latter structures were at least as good as the ones obtained by pure DFT methods. This is a promising result, because some of the main objectives of computational chemistry - low computational cost and time, allied to high performance and precision - were attained together. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Parabens are antimicrobial preservatives widely used in pharmaceutical, cosmetic and food industries. The alkyl chain connected to the ester group defines some important physicochemical characteristics of these compounds, including the partition coefficient and redox properties. The voltammetric and computational analyses were carried out in order to evaluate the redox behavior of these compounds and other phenolic analogues. A strong correlation between chemical substituents inductive effects of parabens with redox potentials was observed. Using cyclic voltammetry and glassy carbon working electrode, only one irreversible anodic peak was observed around 0.8 V for methylparaben (MP), ethylparaben (EP), propylparaben (PP), butylparaben (BP), benzylparaben (BzP) and p-substituted phenolic analogues. The electrodonating inductive effect of alkyl groups was demonstrated by the anodic oxidation potential shift to lower values as the carbon number increases and, therefore the parabens (and other phenolic analogues) oxidation processes to the quinonoidic forms showed great dependence on the substituent pattern.
Resumo:
In order to understand the influence of alkyl side chains on the gas-phase reactivity of 1,4-naphthoquinone derivatives, some 2-hydroxy-1,4-naphthoquinone derivatives have been prepared and studied by electrospray ionization tandem mass spectrometry in combination with computational quantum chemistry calculations. Protonation and deprotonation sites were suggested on the basis of gas-phase basicity, proton affinity, gas-phase acidity (?Gacid), atomic charges and frontier orbital analyses. The nature of the intramolecular interaction as well as of the hydrogen bond in the systems was investigated by the atoms-in-molecules theory and the natural bond orbital analysis. The results were compared with data published for lapachol (2-hydroxy-3-(3-methyl-2-butenyl)-1,4-naphthoquinone). For the protonated molecules, water elimination was verified to occur at lower proportion when compared with side chain elimination, as evidenced in earlier studies on lapachol. The side chain at position C(3) was found to play important roles in the fragmentation mechanisms of these compounds. Copyright (c) 2012 John Wiley & Sons, Ltd.
Resumo:
This work is supported by Brazilian agencies Fapesp, CAPES and CNPq