15 resultados para Collagen V
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Objective To evaluate the action of conjugated equine estrogen, raloxifene and isolated or combined genistein-rich soy extracts on collagen fibers in the bones of oophorectomized rats. Materials and methods Seventy female rats received testosterone propionate (0.1 mu g/g) on the 9th day after birth. At 6 months of age, the rats were administered the vehicle (propylene glycol, 0.5 ml/day), and ten of the rats were randomly chosen to comprise the non-oophorectomized control group (GI). The other 60 rats were ovariectomized and randomized into six groups of ten as follows: GII, vehicle; GIII, conjugated equine estrogen (CEE), 50 mu g/kg/day; GIV, raloxifene (RAL), 0.75 mg/kg/day; GV, genistein-rich soy extract (GSE), 300 mg/kg/day; GVI, CEE + GSE, 50 mu g/kg/day + 300 mg/kg/day; and GVII, CEE + RAL, 50 mu g/kg/day + 0.75 mg/kg/day. Three months after surgery, the drugs were administered for 60 consecutive days. All rats were euthanized, and their left tibiae were removed for histological routine. The histological sections were stained with hematoxylin-eosin, and picrosirius for evaluating bone microarchitecture. Types I and II collagen fibers were analyzed by immunofluorescence. Data analysis was carried out with ANOVA and Tukey's test. Results Collagen reduction was significant in the GIII animals when compared to the other groups (p < 0.05). There was no significant difference in the thickness of collagen fibers among the groups. There was a greater quantity of type III collagen in GVI than in the other groups. Conclusion Our data indicate that conjugated equine estrogen improves bone quality because it increases the quantity of type I collagen while reducing the quantity of thin collagen fibers. In addition, the combination of CEE and raloxifene or genistein-rich soy extract is not as efficient as CEE itself to improve bone quality.
Resumo:
Prosthetic meshes are commonly used to correct abdominal wall defects. However, the inflammatory reaction induced by these devices in the peritoneum is not completely understood. We hypothesized that nitric oxide (NO), produced by nitric oxide synthase 2 (NOS2) may modulate the response induced by mesh implants in the abdominal wall and, consequently, affect the outcome of the surgical procedure. Polypropylene meshes were implanted in the peritoneal side of the abdominal wall in wild-type and NOS2-deficient (NOS2(-/-)) mice. After 15 days tissues around the mesh implant were collected, and inflammatory markers (the cytokine interleukin 1 beta (IL-1 beta) and NO) and tissue remodeling (collagen and metalloproteinases (MMP) 2 and 9) were analyzed. The lack of NOS2-derived NO induced a higher incidence of visceral adhesions at the mesh implantation site compared with wild-type mice that underwent the same procedure (P < 0.05). Additionally, higher levels of IL-1 beta were present in the mesh-implanted NOS2(-/-) animals compared with control and wild-type mice. Mesh implantation induced collagen I and III deposition, but in smaller amounts in NOS2(-/-) mice. MMP-9 activity after the surgical procedure was similarly increased in both groups. Conversely, MMP-2 activity was unchanged in mesh-implanted wild-type mice, but was significantly increased in NOS2(-/-) mice (P < 0.01), due to decreased S-nitrosylation of the enzyme in these animals. We conclude that NOS2-derived NO is crucial for an adequate response to and integration of polypropylene mesh implants in the peritoneum. NO deficiency results in a prolonged inflammatory reaction to the mesh implant, and reduced collagen deposition may contribute to an increased incidence of visceral adhesions. (C) 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
Studies on the collagen system of the human myocardium are still limited compared to those on small laboratory animals. The aim of this work was to observe the collagen tissue of the myocardium of the human heart as a function of age. The types of collagen, as well as the density of collagen tissue and the diameter of collagen fibrils, were examined. Fragments of the left ventricular wall from 15 hearts, 5 from children, 5 from young adults, and 5 from elderly individuals, were analyzed by using the Picrosirius-polarization method and by transmission electron microscopy (TEM). The results showed the presence of collagen type III and collagen type I, both in the endomysium and perimysium of the 3 groups studied. Measurements of collagen content in myocardial tissue displayed that both endomysial and perimysial collagen increase in number and thickness in the adult and elderly. These histochemical results coincided with the observations obtained with the electron microscope in showing an increase in the number of collagen fibrils with a large diameter in the adult and elderly hearts. The present results on cardiac collagen may be important for assessing the pathogenesis of several cardiopathies in the hearts of children, young adults, and the elderly.
Resumo:
Purpose: To investigate the effects of hypercholesterolemic diet on the collagen composition of urinary bladder wall. Materials and methods: Forty-five female 4-week-old Wistar rats were divided into three groups: 1) control group fed a normal diet (ND); 2) model of bladder outlet obstruction (BOO) group fed a ND; and 3) group fed a HCD (1.25% cholesterol). Total serum cholesterol, LDL cholesterol and body weight were assessed at baseline. Four weeks later, group 2 underwent a surgical procedure resulting in a partial BOO, while groups 1 and 3 underwent a sham similar surgical procedure. Six weeks later, all animals had their bladders removed; serum cholesterol and LDL cholesterol levels and body weights were measured. Morphological and morphometric analysis was performed by Picrosirius staining and collagen types I and III were identified by immunofluorescence. Statistical analysis was completed and significance was considered when p<0.05. Results: Rats fed an HCD exhibited a significant increase in LDL cholesterol levels (p<0.001) and body weight (p=0.017), when compared to the groups fed a ND during the ten-week study period. Moreover, the HCD induced morphological alterations of the bladder wall collagen, regarding thin collagen fibers and the amounts of type III collagen when compared to the control group (p=0.002 and p=0.016, respectively), resembling the process promoted in the BOO model. Conclusions: A hyper-cholesterolemic diet in Wistar rats promoted morphological changes of the bladder types of collagen, as well as increases in body weight and LDL cholesterol.
Resumo:
The investigation of titanium (Ti) surface modifications aiming to increase implant osseointegration is one of the most active research areas in dental implantology. This study was carried out to evaluate the benefits of coating Ti with type I collagen on the osseointegration of dental implants. Acid etched Ti implants (AETi), either untreated or coated with type I collagen (ColTi), were placed in dog mandibles for three and eight weeks for histomorphometric, cellular and molecular evaluations of bone tissue response. While the histological aspects were essentially the same with both implants being surrounded by lamellar bone trabeculae, histomorphometric analysis showed more abundant bone formation in ColTi, mainly at three weeks. Cellular evaluation showed that cells harvested from bone fragments in close contact with ColTi display lower proliferative capacity and higher alkaline phosphatase activity, phenotypic features associated with more differentiated osteoblasts. Confirming these findings, molecular analyses showed that ColTi implants up-regulates the expression of a panel of genes well known as osteoblast markers. Our results present a set of evidences that coating AETi with collagen fastens the osseointegration by stimulating bone formation at the cellular and molecular levels, making this combination of morphological and biochemical modification a promising approach to treat Ti surfaces.
Resumo:
Endothelins (ETs) are involved in several inflammatory events. The present study investigated the efficacy of bosentan, a dual ETA/ETB receptor antagonist, in collagen-induced arthritis (CIA) in mice. CIA was induced in DBA/1J mice. Arthritic mice were treated with bosentan (100 mg/kg) once a day, starting from the day when arthritis was clinically detectable. CIA progression was assessed by measurements of visual clinical score, paw swelling and hypernociception. Histological changes, neutrophil infiltration and pro-inflammatory cytokines were evaluated in the joints. Gene expression in the lymph nodes of arthritic mice was evaluated by microarray technology. PreproET-1 mRNA expression in the lymph nodes of mice and in peripheral blood mononuclear cells (PBMCs) was evaluated by real-time PCR. The differences were evaluated by one-way ANOVA or Student's t test. Oral treatment with bosentan markedly ameliorated the clinical aspects of CIA (visual clinical score, paw swelling and hyperalgesia). Bosentan treatment also reduced joint damage, leukocyte infiltration and pro-inflammatory cytokine levels (IL-1 beta, TNF alpha and IL-17) in the joint tissues. Changes in gene expression in the lymph nodes of arthritic mice returned to the levels of the control mice after bosentan treatment. PreproET mRNA expression increased in PBMCs from rheumatoid arthritis (RA) patients but returned to basal level in PBMCs from patients under anti-TNF therapy. In-vitro treatment of PBMCs with TNF alpha upregulated ET system genes. These findings indicate that ET receptor antagonists, such as bosentan, might be useful in controlling RA. Moreover, it seems that ET mediation of arthritis is triggered by TNF alpha.
Resumo:
A hybrid material with excellent mechanical and biological properties is produced by electrospinning a co-solution of PET and collagen. The fibers are mapped using SEM, confocal Raman microscopy and collagenase digestion assays. Fibers of different compositions and morphologies are intermingled within the same membrane, resulting in a heterogeneous scaffold. The collagen distribution and exposure are found to depend on the PET/collagen ratio. The materials are chemically and mechanically characterized and biologically tested with fibroblasts (3T3-L1) and a HUVEC culture in vitro. All of the hybrid scaffolds show better cell attachment and proliferation than PET. These materials are potential candidates to be used as vascular grafts.
Resumo:
Background. Clay is often used in cosmetic treatments, although little is known about its action. Aim. To evaluate the effect of topical clay application on the histoarchitecture of collagen fibres in rat skin. Methods. Animals received a daily application of clay and retinoic acid (RA) 0.025% to the dorsal skin over 7 and 14 days, under vaporization at 37 degrees C for 40 min. Control skin was not vaporized. Samples from each region were excised, and stained with picrosirius red for collagen evaluation. Results. Seven days after clay treatment, an increase in the number of collagen fibres was observed in treated skin compared with control skin (51.74 +/- 1.28 vs. 43.39 +/- 1.79%, respectively, P < 0.01), whereas RA did not alter the collagen level (45.66 +/- 1.10%). Clay application over 14 days did not induce a further increase in skin collagen, whereas treatment with RA did (58.07 +/- 1.59%; P = 0.001 vs. control). Conclusion. Clay application promotes an increase in the number of collagen fibres, which may account for its beneficial effects.
Resumo:
LipL32 is the most abundant outer membrane protein from pathogenic Leptospira and has been shown to bind extracellular matrix (ECM) proteins as well as Ca2+. Recent crystal structures have been obtained for the protein in the apo-and Ca2+-bound forms. In this work, we produced three LipL32 mutants (D163-168A, Q67A, and S247A) and evaluated their ability to interact with Ca2+ and with ECM glycoproteins and human plasminogen. The D163-168A mutant modifies aspartate residues involved in Ca2+ binding, whereas the other two modify residues in a cavity on the other side of the protein structure. Loss of calcium binding in the D163-D168A mutant was confirmed using intrinsic tryptophan fluorescence, circular dichroism, and thermal denaturation whereas the Q67A and S247A mutants presented the same Ca2+ affinity as the wild-type protein. We then evaluated if Ca2+ binding to LipL32 would be crucial for its interaction with collagen type IV and plasma proteins fibronectin and plasminogen. Surprisingly, the wild-type protein and all three mutants, including the D163-168A variant, bound to these ECM proteins with very similar affinities, both in the presence and absence of Ca2+ ions. In conclusion, calcium binding to LipL32 may be important to stabilize the protein, but is not necessary to mediate interaction with host extracellular matrix proteins.
Resumo:
This study aimed to evaluate the chemical interaction of collagen with some substances usually applied in dental treatments to increase the durability of adhesive restorations to dentin. Initially, the similarity between human dentin collagen and type I collagen obtained from commercial bovine membranes of Achilles deep tendon was compared by the Attenuated Total Reflectance technique of Fourier Transform Infrared (ATR-FTIR) spectroscopy. Finally, the effects of application of 35% phosphoric acid, 0.1M ethylenediaminetetraacetic acid (EDTA), 2% chlorhexidine, and 6.5% proanthocyanidin solution on microstructure of collagen and in the integrity of its triple helix were also evaluated by ATR-FTIR. It was observed that the commercial type I collagen can be used as an efficient substitute for demineralized human dentin in studies that use spectroscopy analysis. The 35% phosphoric acid significantly altered the organic content of amides, proline and hydroxyproline of type I collagen. The surface treatment with 0.1M EDTA, 2% chlorhexidine, or 6.5% proanthocyanidin did not promote deleterious structural changes to the collagen triple helix. The application of 6.5% proanthocyanidin on collagen promoted hydrogen bond formation. (c) 2012 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2012.
Resumo:
The aim of this study was to evaluate extracellular matrix components in articular cartilage, ligaments and synovia in an experimental model of diabetes. Young Wistar rats were divided into a streptozotocin-induced (STZ; 35 mg/kg) diabetic group (DG; n=15) and a control group (CG; n=15). Weight, blood glucose and plasma anti-carboxymethyllysine were measured 70 days after STZ infusions. Knee joints, patellar ligaments, and lateral and medial collateral ligaments were isolated and stained with hematoxylineosin and Picrosirius. The total collagen content was determined by morphometry. Immunofluorescence was employed to evaluate types I, III, and V collagen in ligaments and synovial tissues and types II and XI collagen in cartilage. Results: Higher blood glucose levels and plasma anti-carboxymethyllysine were observed in DG rats when compared to those in CG rats. The final weight was significantly lower in the DG rats than in the CG rats. Histomorphometric evaluation depicted a small quantity of collagen fibers in ligaments and articular cartilage in DG rats, as well as increased collagen in synovial tissue. There was a decrease in cartilage proteoglycans in DG rats when compared with CG rats. Immunofluorescence staining revealed an increase of collagen III and V in ligaments, collagen XI in cartilage, and collagen I in synovial tissue of DG rats compared with CG rats. Conclusion: The ligaments, cartilage and synovia are highly affected following STZ-induced diabetes in rats, due the remodeling of collagen types in these tissues. This process may promote the degradation of the extracellular matrix, thus compromising joint function. Our data may help to better understand the pathogenesis of joint involvement related to diabetes.
Resumo:
Objective: To investigate the VEGF expression and collagen deposition using a latex biomembrane as bladder replacement in rabbits. Materials and Methods: After partial cystectomy, a patch of a non-vulcanized latex biomembrane (2 x 2 cm) was sewn to the bladder of rabbits with 5/0 monofilament polydioxanone sulfate sutures in a watertight manner. Groups of 5 animals were killed at 15, 45 and 90 days after surgery and the bladder was removed. Sections of 5 mu m were cut and stained with picrosirius-red in order to estimate the amount of extracellular matrix in the graft. To confirm the presence of VEGF in tissues, protein expression was determined by immunohistochemistry. Results: No death, urinary leakage or graft extrusion occurred in any group. All bladders showed a spherical shape. A progressive reduction in the amount of collagen occurred in the graft area and was negatively and linearly correlated with time (p < 0.001). VEGF expression was higher in grafted areas when compared to controls at 15 and 45 days after surgery and decreased with time (p < 0.001). Conclusion: The latex biomembrane as a matrix for partial bladder replacement in rabbits promotes temporary collagen deposition and stimulates the angiogenic process.
Resumo:
Purpose: To present 7 cases of peripheral sterile corneal infiltrates that occurred after corneal cross-linking (CXL) for progressive keratectasia. Methods: Seven patients who had their progressive keratoconus documented underwent corneal deepithelization and subsequently CXL, which was performed with the application of 0.1% riboflavin with 20% dextran, and exposure to UVA light (370 nm, 2.9-3.1 mW/cm(2)) for 30 minutes. Results: Nearly a week after the procedure, the patients presented with peripheral stromal infiltrates. The ring-like infiltrates were superficial and were present at the 9.0-mm zone. Sterile infiltration was diagnosed. Patients were treated with topical corticosteroids, and complete resolution was achieved after a few weeks of treatment. Conclusions: We hypothesize that the phototoxic effect on the corneal stroma may be the main mechanism that triggers these infiltrates. Alternatively, alterations in antigenicity that occur in native proteins after CXL could result in patients recognizing the proteins as nonself and mounting immune responses.
Resumo:
A nanocomposite based on bacterial cellulose (BC) and type I collagen (COL) was evaluated for in vitro bone regeneration. BC membranes were modified by glycine esterification followed by cross-linking of type I collagen employing 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide. Collagen incorporation was studied by spectroscopy analysis. X-Ray diffraction showed changes in the BC crystallinity after collagen incorporation. The elastic modulus and tensile strength for BC-COL decreased, while the strain at failure showed a slight increase, even after sterilization, as compared to pristine BC. Swelling tests and contact angle measurements were also performed. Cell culture experiments performed with osteogenic cells were obtained by enzymatic digestion of newborn rat calvarium revealed similar features of cell morphology for cultures grown on both membranes. Cell viability/proliferation was not different between BC and BC-COL membranes at day 10 and 14. The high total protein content and ALP activity at day 17 in cells cultured on BC-COL indicate that this composite allowed the development of the osteoblastic phenotype in vitro. Thus, BC-COL should be considered as alternative biomaterial for bone tissue engineering.
Resumo:
Support structures for dermal regeneration are composed of biodegradable and bioresorbable polymers, animal skin or tendons, or are bacteria products. The use of such materials is controversial due to their low efficiency. An important area within tissue engineering is the application of multipotent mesenchymal stromal cells (MSCs) to reparative surgery. The combined use of biodegradable membranes with stem cell therapy may lead to promising results for patients undergoing unsuccessful conventional treatments. Thus, the aim of this study was to test the efficacy of using membranes composed of anionic collagen with or without the addition of hyaluronic acid (HA) as a substrate for adhesion and in vitro differentiation of bone marrow-derived canine MSCs. The benefit of basic fibroblast growth factor (bFGF) on the differentiation of cells in culture was also tested. MSCs were collected from dog bone marrow, isolated and grown on collagen scaffolds with or without HA. Cell viability, proliferation rate, and cellular toxicity were analyzed after 7 days. The cultured cells showed uniform growth and morphological characteristics of undifferentiated MSCs, which demonstrated that MSCs successfully adapted to the culture conditions established by collagen scaffolds with or without HA. This demonstrates that such scaffolds are promising for applications to tissue regeneration. bFGF significantly increased the proliferative rate of MSCs by 63% when compared to groups without the addition of the growth factor. However, the addition of bFGF becomes limiting, since it has an inhibitory effect at high concentrations in culture medium.