29 resultados para Chaotic attractors

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

60.00% 60.00%

Publicador:

Resumo:

We studied free surface oscillations of a fluid in a cylinder tank excited by an electric motor with limited power supply. We investigated the possibility of parametric resonance in this system, showing that the excitation mechanism can generate chaotic response. Numerical experiments are carried out to present the existence of several types of regular and chaotic attractors. For the first time powers (power of the motor, power consumed by the damping force under fluid free surface oscillations, and a total power) are calculated, investigated, and shown for different regimes, regular and chaotic ones for parametric resonance interactions. [DOI: 10.1115/1.4005844]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper is dedicated to estimate the fractal dimension of exponential global attractors of some generalized gradient-like semigroups in a general Banach space in terms of the maximum of the dimension of the local unstable manifolds of the isolated invariant sets, Lipschitz properties of the semigroup and the rate of exponential attraction. We also generalize this result for some special evolution processes, introducing a concept of Morse decomposition with pullback attractivity. Under suitable assumptions, if (A, A*) is an attractor-repeller pair for the attractor A of a semigroup {T(t) : t >= 0}, then the fractal dimension of A can be estimated in terms of the fractal dimension of the local unstable manifold of A*, the fractal dimension of A, the Lipschitz properties of the semigroup and the rate of the exponential attraction. The ingredients of the proof are the notion of generalized gradient-like semigroups and their regular attractors, Morse decomposition and a fine analysis of the structure of the attractors. As we said previously, we generalize this result for some evolution processes using the same basic ideas. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Over the past few years, the field of global optimization has been very active, producing different kinds of deterministic and stochastic algorithms for optimization in the continuous domain. These days, the use of evolutionary algorithms (EAs) to solve optimization problems is a common practice due to their competitive performance on complex search spaces. EAs are well known for their ability to deal with nonlinear and complex optimization problems. Differential evolution (DE) algorithms are a family of evolutionary optimization techniques that use a rather greedy and less stochastic approach to problem solving, when compared to classical evolutionary algorithms. The main idea is to construct, at each generation, for each element of the population a mutant vector, which is constructed through a specific mutation operation based on adding differences between randomly selected elements of the population to another element. Due to its simple implementation, minimum mathematical processing and good optimization capability, DE has attracted attention. This paper proposes a new approach to solve electromagnetic design problems that combines the DE algorithm with a generator of chaos sequences. This approach is tested on the design of a loudspeaker model with 17 degrees of freedom, for showing its applicability to electromagnetic problems. The results show that the DE algorithm with chaotic sequences presents better, or at least similar, results when compared to the standard DE algorithm and other evolutionary algorithms available in the literature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Chafee-Infante equation is one of the canonical infinite-dimensional dynamical systems for which a complete description of the global attractor is available. In this paper we study the structure of the pullback attractor for a non-autonomous version of this equation, u(t) = u(xx) + lambda(xx) - lambda u beta(t)u(3), and investigate the bifurcations that this attractor undergoes as A is varied. We are able to describe these in some detail, despite the fact that our model is truly non-autonomous; i.e., we do not restrict to 'small perturbations' of the autonomous case.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A chaotic encryption algorithm is proposed based on the "Life-like" cellular automata (CA), which acts as a pseudo-random generator (PRNG). The paper main focus is to use chaos theory to cryptography. Thus, CA was explored to look for this "chaos" property. This way, the manuscript is more concerning on tests like: Lyapunov exponent, Entropy and Hamming distance to measure the chaos in CA, as well as statistic analysis like DIEHARD and ENT suites. Our results achieved higher randomness quality than others ciphers in literature. These results reinforce the supposition of a strong relationship between chaos and the randomness quality. Thus, the "chaos" property of CA is a good reason to be employed in cryptography, furthermore, for its simplicity, low cost of implementation and respectable encryption power. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article is a continuation of our previous work [5], where we formulated general existence theorems for pullback exponential attractors for asymptotically compact evolution processes in Banach spaces and discussed its implications in the autonomous case. We now study properties of the attractors and use our theoretical results to prove the existence of pullback exponential attractors in two examples, where previous results do not apply.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, we propose an extension of the invariance principle for nonlinear switched systems under dwell-time switched solutions. This extension allows the derivative of an auxiliary function V, also called a Lyapunov-like function, along the solutions of the switched system to be positive on some sets. The results of this paper are useful to estimate attractors of nonlinear switched systems and corresponding basins of attraction. Uniform estimates of attractors and basin of attractions with respect to time-invariant uncertain parameters are also obtained. Results for a common Lyapunov-like function and multiple Lyapunov-like functions are given. Illustrative examples show the potential of the theoretical results in providing information on the asymptotic behavior of nonlinear dynamical switched systems. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In fluids and plasmas with zonal flow reversed shear, a peculiar kind of transport barrier appears in the shearless region, one that is associated with a proper route of transition to chaos. These barriers have been identified in symplectic nontwist maps that model such zonal flows. We use the so-called standard nontwist map, a paradigmatic example of nontwist systems, to analyze the parameter dependence of the transport through a broken shearless barrier. On varying a proper control parameter, we identify the onset of structures with high stickiness that give rise to an effective barrier near the broken shearless curve. Moreover, we show how these stickiness structures, and the concomitant transport reduction in the shearless region, are determined by a homoclinic tangle of the remaining dominant twin island chains. We use the finite-time rotation number, a recently proposed diagnostic, to identify transport barriers that separate different regions of stickiness. The identified barriers are comparable to those obtained by using finite-time Lyapunov exponents.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper we study the continuity of invariant sets for nonautonomous infinite-dimensional dynamical systems under singular perturbations. We extend the existing results on lower-semicontinuity of attractors of autonomous and nonautonomous dynamical systems. This is accomplished through a detailed analysis of the structure of the invariant sets and its behavior under perturbation. We prove that a bounded hyperbolic global solutions persists under singular perturbations and that their nonlinear unstable manifold behave continuously. To accomplish this, we need to establish results on roughness of exponential dichotomies under these singular perturbations. Our results imply that, if the limiting pullback attractor of a nonautonomous dynamical system is the closure of a countable union of unstable manifolds of global bounded hyperbolic solutions, then it behaves continuously (upper and lower) under singular perturbations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Some phase space transport properties for a conservative bouncer model are studied. The dynamics of the model is described by using a two-dimensional measure preserving mapping for the variables' velocity and time. The system is characterized by a control parameter epsilon and experiences a transition from integrable (epsilon = 0) to nonintegrable (epsilon not equal 0). For small values of epsilon, the phase space shows a mixed structure where periodic islands, chaotic seas, and invariant tori coexist. As the parameter epsilon increases and reaches a critical value epsilon(c), all invariant tori are destroyed and the chaotic sea spreads over the phase space, leading the particle to diffuse in velocity and experience Fermi acceleration (unlimited energy growth). During the dynamics the particle can be temporarily trapped near periodic and stable regions. We use the finite time Lyapunov exponent to visualize this effect. The survival probability was used to obtain some of the transport properties in the phase space. For large epsilon, the survival probability decays exponentially when it turns into a slower decay as the control parameter epsilon is reduced. The slower decay is related to trapping dynamics, slowing the Fermi Acceleration, i.e., unbounded growth of the velocity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Shearless transport barriers appear in confined plasmas due to non-monotonic radial profiles and cause localized reduction of transport even after they have been broken. In this paper we summarize our recent theoretical and experimental research on shearless transport barriers in plasmas confined in toroidal devices. In particular, we discuss shearless barriers in Lagrangian magnetic field line transport caused by non-monotonic safety factor profiles. We also discuss evidence of particle transport barriers found in the TCABR Tokamak (University of Sao Paulo) and the Texas Helimak (University of Texas at Austin) in biased discharges with non-monotonic plasma flows.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this study we address the problem of the response of a (electro)chemical oscillator towards chemical perturbations of different magnitudes. The chemical perturbation was achieved by addition of distinct amounts of trifluoromethanesulfonate (TFMSA), a rather stable and non-specifically adsorbing anion, and the system under investigation was the methanol electro-oxidation reaction under both stationary and oscillatory regimes. Increasing the anion concentration resulted in a decrease in the reaction rates of methanol oxidation and a general decrease in the parameter window where oscillations occurred. Furthermore, the addition of TFMSA was found to decrease the induction period and the total duration of oscillations. The mechanism underlying these observations was derived mathematically and revealed that inhibition in the methanol oxidation through blockage of active sites was found to further accelerate the intrinsic non-stationarity of the unperturbed system. Altogether, the presented results are among the few concerning the experimental assessment of the sensitiveness of an oscillator towards chemical perturbations. The universal nature of the complex chemical oscillator investigated here might be used for reference when studying the dynamics of other less accessible perturbed networks of (bio)chemical reactions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An explicit, area-preserving and integrable magnetic field line map for a single-null divertor tokamak is obtained using a trajectory integration method to represent equilibrium magnetic surfaces. The magnetic surfaces obtained from the map are capable of fitting different geometries with freely specified position of the X-point, by varying free model parameters. The safety factor profile of the map is independent of the geometric parameters and can also be chosen arbitrarily. The divertor integrable map is composed of a nonintegrable map that simulates the effect of external symmetry-breaking resonances, so as to generate a chaotic region near the separatrix passing through the X-point. The composed field line map is used to analyze escape patterns (the connection length distribution and magnetic footprints on the divertor plate) for two equilibrium configurations with different magnetic shear profiles at the plasma edge.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work, we are interested in the dynamic behavior of a parabolic problem with nonlinear boundary conditions and delay in the boundary. We construct a reaction-diffusion problem with delay in the interior, where the reaction term is concentrated in a neighborhood of the boundary and this neighborhood shrinks to boundary, as a parameter epsilon goes to zero. We analyze the limit of the solutions of this concentrated problem and prove that these solutions converge in certain continuous function spaces to the unique solution of the parabolic problem with delay in the boundary. This convergence result allows us to approximate the solution of equations with delay acting on the boundary by solutions of equations with delay acting in the interior and it may contribute to analyze the dynamic behavior of delay equations when the delay is at the boundary. (C) 2012 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Complexity in time series is an intriguing feature of living dynamical systems, with potential use for identification of system state. Although various methods have been proposed for measuring physiologic complexity, uncorrelated time series are often assigned high values of complexity, errouneously classifying them as a complex physiological signals. Here, we propose and discuss a method for complex system analysis based on generalized statistical formalism and surrogate time series. Sample entropy (SampEn) was rewritten inspired in Tsallis generalized entropy, as function of q parameter (qSampEn). qSDiff curves were calculated, which consist of differences between original and surrogate series qSampEn. We evaluated qSDiff for 125 real heart rate variability (HRV) dynamics, divided into groups of 70 healthy, 44 congestive heart failure (CHF), and 11 atrial fibrillation (AF) subjects, and for simulated series of stochastic and chaotic process. The evaluations showed that, for nonperiodic signals, qSDiff curves have a maximum point (qSDiff(max)) for q not equal 1. Values of q where the maximum point occurs and where qSDiff is zero were also evaluated. Only qSDiff(max) values were capable of distinguish HRV groups (p-values 5.10 x 10(-3); 1.11 x 10(-7), and 5.50 x 10(-7) for healthy vs. CHF, healthy vs. AF, and CHF vs. AF, respectively), consistently with the concept of physiologic complexity, and suggests a potential use for chaotic system analysis. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4758815]