15 resultados para CURE FRACTION MODEL
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Many recent survival studies propose modeling data with a cure fraction, i.e., data in which part of the population is not susceptible to the event of interest. This event may occur more than once for the same individual (recurrent event). We then have a scenario of recurrent event data in the presence of a cure fraction, which may appear in various areas such as oncology, finance, industries, among others. This paper proposes a multiple time scale survival model to analyze recurrent events using a cure fraction. The objective is analyzing the efficiency of certain interventions so that the studied event will not happen again in terms of covariates and censoring. All estimates were obtained using a sampling-based approach, which allows information to be input beforehand with lower computational effort. Simulations were done based on a clinical scenario in order to observe some frequentist properties of the estimation procedure in the presence of small and moderate sample sizes. An application of a well-known set of real mammary tumor data is provided.
Resumo:
In this article, for the first time, we propose the negative binomial-beta Weibull (BW) regression model for studying the recurrence of prostate cancer and to predict the cure fraction for patients with clinically localized prostate cancer treated by open radical prostatectomy. The cure model considers that a fraction of the survivors are cured of the disease. The survival function for the population of patients can be modeled by a cure parametric model using the BW distribution. We derive an explicit expansion for the moments of the recurrence time distribution for the uncured individuals. The proposed distribution can be used to model survival data when the hazard rate function is increasing, decreasing, unimodal and bathtub shaped. Another advantage is that the proposed model includes as special sub-models some of the well-known cure rate models discussed in the literature. We derive the appropriate matrices for assessing local influence on the parameter estimates under different perturbation schemes. We analyze a real data set for localized prostate cancer patients after open radical prostatectomy.
Resumo:
In this article, we propose a new Bayesian flexible cure rate survival model, which generalises the stochastic model of Klebanov et al. [Klebanov LB, Rachev ST and Yakovlev AY. A stochastic-model of radiation carcinogenesis - latent time distributions and their properties. Math Biosci 1993; 113: 51-75], and has much in common with the destructive model formulated by Rodrigues et al. [Rodrigues J, de Castro M, Balakrishnan N and Cancho VG. Destructive weighted Poisson cure rate models. Technical Report, Universidade Federal de Sao Carlos, Sao Carlos-SP. Brazil, 2009 (accepted in Lifetime Data Analysis)]. In our approach, the accumulated number of lesions or altered cells follows a compound weighted Poisson distribution. This model is more flexible than the promotion time cure model in terms of dispersion. Moreover, it possesses an interesting and realistic interpretation of the biological mechanism of the occurrence of the event of interest as it includes a destructive process of tumour cells after an initial treatment or the capacity of an individual exposed to irradiation to repair altered cells that results in cancer induction. In other words, what is recorded is only the damaged portion of the original number of altered cells not eliminated by the treatment or repaired by the repair system of an individual. Markov Chain Monte Carlo (MCMC) methods are then used to develop Bayesian inference for the proposed model. Also, some discussions on the model selection and an illustration with a cutaneous melanoma data set analysed by Rodrigues et al. [Rodrigues J, de Castro M, Balakrishnan N and Cancho VG. Destructive weighted Poisson cure rate models. Technical Report, Universidade Federal de Sao Carlos, Sao Carlos-SP. Brazil, 2009 (accepted in Lifetime Data Analysis)] are presented.
Resumo:
The purpose of this paper is to develop a Bayesian analysis for the right-censored survival data when immune or cured individuals may be present in the population from which the data is taken. In our approach the number of competing causes of the event of interest follows the Conway-Maxwell-Poisson distribution which generalizes the Poisson distribution. Markov chain Monte Carlo (MCMC) methods are used to develop a Bayesian procedure for the proposed model. Also, some discussions on the model selection and an illustration with a real data set are considered.
Resumo:
In this paper, we propose a cure rate survival model by assuming the number of competing causes of the event of interest follows the Geometric distribution and the time to event follow a Birnbaum Saunders distribution. We consider a frequentist analysis for parameter estimation of a Geometric Birnbaum Saunders model with cure rate. Finally, to analyze a data set from the medical area. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
The log-Burr XII regression model for grouped survival data is evaluated in the presence of many ties. The methodology for grouped survival data is based on life tables, where the times are grouped in k intervals, and we fit discrete lifetime regression models to the data. The model parameters are estimated by maximum likelihood and jackknife methods. To detect influential observations in the proposed model, diagnostic measures based on case deletion, so-called global influence, and influence measures based on small perturbations in the data or in the model, referred to as local influence, are used. In addition to these measures, the total local influence and influential estimates are also used. We conduct Monte Carlo simulation studies to assess the finite sample behavior of the maximum likelihood estimators of the proposed model for grouped survival. A real data set is analyzed using a regression model for grouped data.
Resumo:
The beta-Birnbaum-Saunders (Cordeiro and Lemonte, 2011) and Birnbaum-Saunders (Birnbaum and Saunders, 1969a) distributions have been used quite effectively to model failure times for materials subject to fatigue and lifetime data. We define the log-beta-Birnbaum-Saunders distribution by the logarithm of the beta-Birnbaum-Saunders distribution. Explicit expressions for its generating function and moments are derived. We propose a new log-beta-Birnbaum-Saunders regression model that can be applied to censored data and be used more effectively in survival analysis. We obtain the maximum likelihood estimates of the model parameters for censored data and investigate influence diagnostics. The new location-scale regression model is modified for the possibility that long-term survivors may be presented in the data. Its usefulness is illustrated by means of two real data sets. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
The study introduces a new regression model developed to estimate the hourly values of diffuse solar radiation at the surface. The model is based on the clearness index and diffuse fraction relationship, and includes the effects of cloud (cloudiness and cloud type), traditional meteorological variables (air temperature, relative humidity and atmospheric pressure observed at the surface) and air pollution (concentration of particulate matter observed at the surface). The new model is capable of predicting hourly values of diffuse solar radiation better than the previously developed ones (R-2 = 0.93 and RMSE = 0.085). A simple version with a large applicability is proposed that takes into consideration cloud effects only (cloudiness and cloud height) and shows a R-2 = 0.92. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
This work addresses the solution to the problem of robust model predictive control (MPC) of systems with model uncertainty. The case of zone control of multi-variable stable systems with multiple time delays is considered. The usual approach of dealing with this kind of problem is through the inclusion of non-linear cost constraint in the control problem. The control action is then obtained at each sampling time as the solution to a non-linear programming (NLP) problem that for high-order systems can be computationally expensive. Here, the robust MPC problem is formulated as a linear matrix inequality problem that can be solved in real time with a fraction of the computer effort. The proposed approach is compared with the conventional robust MPC and tested through the simulation of a reactor system of the process industry.
Resumo:
In the clinical setting, the early detection of myocardial injury induced by doxorubicin (DXR) is still considered a challenge. To assess whether ultrasonic tissue characterization (UTC) can identify early DXR-related myocardial lesions and their correlation with collagen myocardial percentages, we studied 60 rats at basal status and prospectively after 2mg/Kg/week DXR endovenous infusion. Echocardiographic examinations were conducted at baseline and at 8,10,12,14 and 16 mg/Kg DXR cumulative dose. The left ventricle ejection fraction (LVEF), shortening fraction (SF), and the UTC indices: corrected coefficient of integrated backscatter (IBS) (tissue IBS intensity/phantom IBS intensity) (CC-IBS) and the cyclic variation magnitude of this intensity curve (MCV) were measured. The variation of each parameter of study through DXR dose was expressed by the average and standard error at specific DXR dosages and those at baseline. The collagen percent (%) was calculated in six control group animals and 24 DXR group animals. CC-IBS increased (1.29 +/- 0.27 x 1.1 +/- 0.26-basal; p=0.005) and MCV decreased (9.1 +/- 2.8 x 11.02 +/- 2.6-basal; p=0.006) from 8 mg/Kg to 16mg/Kg DXR. LVEF presented only a slight but significant decrease (80.4 +/- 6.9% x 85.3 +/- 6.9%-basal, p=0.005) from 8 mg/Kg to 16 mg/Kg DXR. CC-IBS was 72.2% sensitive and 83.3% specific to detect collagen deposition of 4.24%(AUC=0.76). LVEF was not accurate to detect initial collagen deposition (AUC=0.54). In conclusion: UTC was able to early identify the DXR myocardial lesion when compared to LVEF, showing good accuracy to detect the initial collagen deposition in this experimental animal model.
Resumo:
In this paper, a new family of survival distributions is presented. It is derived by considering that the latent number of failure causes follows a Poisson distribution and the time for these causes to be activated follows an exponential distribution. Three different activation schemes are also considered. Moreover, we propose the inclusion of covariates in the model formulation in order to study their effect on the expected value of the number of causes and on the failure rate function. Inferential procedure based on the maximum likelihood method is discussed and evaluated via simulation. The developed methodology is illustrated on a real data set on ovarian cancer.
Resumo:
Exercise training (ET) is an important intervention for chronic diseases such as diabetes mellitus (DM). However, it is not known whether previous exercise training intervention alters the physiological and medical complications of these diseases. We investigated the effects of previous ET on the progression of renal disease and cardiovascular autonomic control in rats with streptozotocin (STZ)-induced DM. Male Wistar rats were divided into five groups. All groups were followed for 15 weeks. Trained control and trained diabetic rats underwent 10 weeks of exercise training, whereas previously trained diabetic rats underwent 14 weeks of exercise training. Renal function, proteinuria, renal sympathetic nerve activity (RSNA) and the echocardiographic parameters autonomic modulation and baroreflex sensitivity (BRS) were evaluated. In the previously trained group, the urinary albumin/creatinine ratio was reduced compared with the sedentary diabetic and trained diabetic groups (p < 0.05). Additionally, RSNA was normalized in the trained diabetic and previously trained diabetic animals (p < 0.05). The ejection fraction was increased in the previously trained diabetic animals compared with the diabetic and trained diabetic groups (p < 0.05), and the myocardial performance index was improved in the previously trained diabetic group compared with the diabetic and trained diabetic groups (p < 0.05). In addition, the previously trained rats had improved heart rate variability and BRS in the tachycardic response and bradycardic response in relation to the diabetic group (p < 0.05). This study demonstrates that previous ET improves the functional damage that affects DM. Additionally, our findings suggest that the development of renal and cardiac dysfunction can be minimized by 4 weeks of ET before the induction of DM by STZ.
Resumo:
Long-term survival models have historically been considered for analyzing time-to-event data with long-term survivors fraction. However, situations in which a fraction (1 - p) of systems is subject to failure from independent competing causes of failure, while the remaining proportion p is cured or has not presented the event of interest during the time period of the study, have not been fully considered in the literature. In order to accommodate such situations, we present in this paper a new long-term survival model. Maximum likelihood estimation procedure is discussed as well as interval estimation and hypothesis tests. A real dataset illustrates the methodology.
Resumo:
This paper addresses the numerical solution of random crack propagation problems using the coupling boundary element method (BEM) and reliability algorithms. Crack propagation phenomenon is efficiently modelled using BEM, due to its mesh reduction features. The BEM model is based on the dual BEM formulation, in which singular and hyper-singular integral equations are adopted to construct the system of algebraic equations. Two reliability algorithms are coupled with BEM model. The first is the well known response surface method, in which local, adaptive polynomial approximations of the mechanical response are constructed in search of the design point. Different experiment designs and adaptive schemes are considered. The alternative approach direct coupling, in which the limit state function remains implicit and its gradients are calculated directly from the numerical mechanical response, is also considered. The performance of both coupling methods is compared in application to some crack propagation problems. The investigation shows that direct coupling scheme converged for all problems studied, irrespective of the problem nonlinearity. The computational cost of direct coupling has shown to be a fraction of the cost of response surface solutions, regardless of experiment design or adaptive scheme considered. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
A detailed numerical simulation of ethanol turbulent spray combustion on a rounded jet flame is pre- sented in this article. The focus is to propose a robust mathematical model with relatively low complexity sub- models to reproduce the main characteristics of the cou- pling between both phases, such as the turbulence modulation, turbulent droplets dissipation, and evaporative cooling effect. A RANS turbulent model is implemented. Special features of the model include an Eulerian– Lagrangian procedure under a fully two-way coupling and a modified flame sheet model with a joint mixture fraction– enthalpy b -PDF. Reasonable agreement between measured and computed mean profiles of temperature of the gas phase and droplet size distributions is achieved. Deviations found between measured and predicted mean velocity profiles are attributed to the turbulent combustion modeling adopted