21 resultados para CELL-CYCLE ARREST
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Melanoma is one of the most treatment-resistant malignancies and regardless of new therapeutic tactics the outcome remains dismal. Polo-like kinase 1 (PLK1) has been shown to be over-expressed in a variety of tumors, becoming an attractive target for cancer management. In the present study we tested the in vitro antitumor activities of BI 2536, a selective inhibitor of PLK1, against two melanoma cell lines. Our results showed that nanomolar concentrations (10-150 nmol/L) of the drug significantly decreased cell proliferation and clonogenicity, promoting cell cycle arrest in G2/M. Targeting the cell cycle offers an attractive potential cancer-treatment option. Herein we show that PLK1 inhibition may be a feasible approach for the impairment of tumor progression and dissemination. This in vitro profile of melanoma cell growth inhibition by PLK1 modulation may be an interesting model to be tested in association with first-line antineoplasic agents in melanomas.
Resumo:
Background Human homeobox genes encode nuclear proteins that act as transcription factors involved in the control of differentiation and proliferation. Currently, the role of these genes in development and tumor progression has been extensively studied. Recently, increased expression of HOXB7 homeobox gene (HOXB7) in pancreatic ductal adenocarcinomas (PDAC) was shown to correlate with an invasive phenotype, lymph node metastasis and worse survival outcomes, but no influence on cell proliferation or viability was detected. In the present study, the effects arising from the knockdown of HOXB7 in PDAC cell lines was investigated. Methods Real time quantitative PCR (qRT-PCR) (Taqman) was employed to assess HOXB7 mRNA expression in 29 PDAC, 6 metastatic tissues, 24 peritumoral tissues and two PDAC cell lines. siRNA was used to knockdown HOXB7 mRNA in the cell lines and its consequences on apoptosis rate and cell proliferation were measured by flow cytometry and MTT assay respectively. Results Overexpression of HOXB7 mRNA was observed in the tumoral tissues and in the cell lines MIA PaCa-2 and Capan-1. HOXB7 knockdown elicited (1) an increase in the expression of the pro-apoptotic proteins BAX and BAD in both cell lines; (2) a decrease in the expression of the anti-apoptotic protein BCL-2 and in cyclin D1 and an increase in the number of apoptotic cells in the MIA PaCa-2 cell line; (3) accumulation of cell in sub-G1 phase in both cell lines; (4) the modulation of several biological processes, especially in MIA PaCa-2, such as proteasomal ubiquitin-dependent catabolic process and cell cycle. Conclusion The present study confirms the overexpression of HOXB7 mRNA expression in PDAC and demonstrates that decreasing its protein level by siRNA could significantly increase apoptosis and modulate several biological processes. HOXB7 might be a promising target for future therapies.
Resumo:
Phosphoethanolamine (Pho-s) is a compound involved in phospholipid turnover, acting as a substrate for many phospholipids of the cell membranes, especially phosphatidylcholine. We recently reported that synthetic Pho-s has potent effects on a wide variety of tumor cells. To determine if Pho-s has a potential antitumor activity, in this study we evaluated the activity of Pho-s against the B16-F10 melanoma both in vitro and in mice bearing a dorsal tumor. The treatment of B16F10 cells with Pho-s resulted in a dose-dependent inhibition of cell proliferation. At low concentrations, this activity appears to be involved in the arrest of the cell cycle at G2/M, while at high concentrations Pho-s induces apoptosis. In accordance with these results, the loss of mitochondrial potential and increased caspase-3 activity suggest that Phos has dual antitumor effects; i.e. it induces apoptosis at high concentrations and modulates the cell cycle at lower concentrations. In vivo, we evaluated the effect of Pho-s in mice bearing B16-F10 melanoma. The results show that Pho-s reduces the tumoral volume increasing survival rate. Furthermore, the tumor doubling time and tumor delays were substantially reduced when compared with untreated mice. Histological analyses reveal that Pho-s induces changes in cell morphology, typical characteristics of apoptosis, in addition the large areas of necrosis correlating with a reduction of tumor size. The results presented here support the hypothesis that Pho-s has antitumor effects by the induction of apoptosis as well as the inhibition of cell proliferation by arrest at G2/M. Thus, Pho-s can be regarded as a promising agent for the treatment of melanoma. Published by Elsevier Masson SAS.
Resumo:
The first cleavage divisions and preimplantation embryonic development are supported by mRNA and proteins synthesized and stored during oogenesis. Thus, mRNA molecules of maternal origin decrease and embryonic development becomes gradually dependent on expression of genetic information derived from the embryonic genome. However, it is still unclear what the role of the sperm cell is during this phase and whether the absence of the sperm cell during the artificial oocyte activation affects subsequent embryonic development. The objective of this study was to determine, in bovine embryos, changes in cell cycle-associated transcript levels (cyclin A, cyclin B, cyclin E, CDC2, CDK2, and CDK4) after oocyte activation in the presence or absence of the sperm cell. To evaluate that, in vitro-produced (IVP) and parthenogenetically activated (PA) embryos (2-4 cells (2-4C), 8-16 cells (8-16C) and blastocysts) were evaluated by real-time PCR. There was no difference in cleavage and blastocyst rates between IVP and PA groups. Transcript level was higher in oocytes than in IVP and PA embryos. Cleaved PA embryos showed higher expression of cyclin A, cyclin B, cyclin E, and CDK2 and lower expression of CDC2 when compared with that from the IVP group. At the time of activation, all transcripts were expressed less in PA than in IVP embryos, whereas at the blastocyst stage, almost all genes were expressed at a higher level in the PA group. These results suggest that in both groups there is an initial consumption of these transcripts in the early stages of embryonic development. Furthermore, 8-16C embryos seem to synthesize more cell cycle-related genes than 2-4C embryos. However, in PA embryos, activation of the cell cycle genes seems to occur after the 8- to 16-cell stage, suggesting a failure in the activation process.
Resumo:
Alcohol and tobacco consumption are risk factors for head and neck squamous cell carcinoma (HNSCC). Aldehyde dehydrogenase 2 (ALDH2) and glutathione Stransferase pi 1 (GSTP1) are important enzymes for cellular detoxification and low efficiencies are implicated in cancer. We assessed the potential role of SET protein overexpression, a histone acetylation modulator accumulated in HNSCC, in gene regulation and protein activity of ALDH2 and GSTP1. SET was knocked down in HN13, HN12 and Cal27, and overexpressed in HEK293 cells; ethanol and cisplatin were the chemical agents. Cells with SET overexpression (HEK293/SET, HN13 and HN12) showed lower ALDH2 and GSTP1 mRNA levels and trichostatin A increased them (real-time PCR). Ethanol upregulated GSTP1 and ALDH2 mRNAs, whereas cisplatin upregulated GSTP1 in HEK293 cells. SET-chromatin binding revealed SET interaction with ALDH2 and GSTP1 promoters, specifically via SET NAP domain; ethanol and cisplatin abolished SET binding. ALDH2 and GSTP1 efficiency was assessed by enzymatic and comet assay. A lower ALDH2 activity was associated with greater DNA damage (tail intensity) in HEK293/SET compared with HEK293 cells, whereas HN13/siSET showed ALDH2 activity higher than HN13 cells. HN13/siSET cells showed increased tail intensity. Cisplatin-induced DNA damage response showed negative relationship between SET overexpression and BRCA2 recruitment. SET downregulated repair genes ATM, BRCA1 and CHEK2 and upregulated TP53. Cisplatin-induced cell-cycle arrest occurred in G0/G1 and S in HEK293 cells, whereas HEK293/SET showed G2/M stalling. Overall, cisplatin was more cytotoxic for HN13 than HN13/siSET cells. Our data suggest a role for SET in cellular detoxification, DNA damage response and genome integrity.
A Robust Structural PGN Model for Control of Cell-Cycle Progression Stabilized by Negative Feedbacks
Resumo:
The cell division cycle comprises a sequence of phenomena controlled by a stable and robust genetic network. We applied a probabilistic genetic network (PGN) to construct a hypothetical model with a dynamical behavior displaying the degree of robustness typical of the biological cell cycle. The structure of our PGN model was inspired in well-established biological facts such as the existence of integrator subsystems, negative and positive feedback loops, and redundant signaling pathways. Our model represents genes interactions as stochastic processes and presents strong robustness in the presence of moderate noise and parameters fluctuations. A recently published deterministic yeast cell-cycle model does not perform as well as our PGN model, even upon moderate noise conditions. In addition, self stimulatory mechanisms can give our PGN model the possibility of having a pacemaker activity similar to the observed in the oscillatory embryonic cell cycle.
Resumo:
DNA damage induced by ultraviolet (UV) radiation can be removed by nucleotide excision repair through two sub-pathways, one general (GGR) and the other specific for transcribed DNA (TCR), and the processing of unrepaired lesions trigger signals that may lead to cell death. These signals involve the tumor suppressor p53 protein, a central regulator of cell responses to DNA damage, and the E3 ubiquitin ligase Mdm2, that forms a feedback regulatory loop with p53. The involvement of cell cycle and transcription on the signaling to apoptosis was investigated in UVB-irradiated synchronized, DNA repair proficient, CS-B (TCR-deficient) and XP-C (GGR-deficient) primary human fibroblasts. Cells were irradiated in the G1 phase of the cell cycle, with two doses with equivalent levels of apoptosis (low and high), defined for each cell line. In the three cell lines, the low doses of UVB caused only a transient delay in progression to the S phase, whereas the high doses induced permanent cell cycle arrest. However, while accumulation of Mdm2 correlated well with the recovery from transcription inhibition at the low doses for normal and CS-B fibroblasts, for XP-C cells this protein was shown to be accumulated even at UVB doses that induced high levels of apoptosis. Thus, UVB-induced accumulation of Mdm2 is critical for counteracting p53 activation and apoptosis avoidance, but its effect is limited due to transcription inhibition. However, in the case of XP-C cells, an excess of unrepaired DNA damage would be sufficient to block S phase progression, which would signal to apoptosis, independent of Mdm2 accumulation. The data clearly discriminate DNA damage signals that lead to cell death, depending on the presence of UVB-induced DNA damage in replicating or transcribing regions.
Resumo:
Doxorubicin (DOX) is an important tumor chemotherapeutic agent, acting mainly by genotoxic action. This work focus on cell processes that help cell survival, after DOX-induced DNA damage. In fact, cells deficient for XPA or DNA polymerase eta (pol eta, XPV) proteins (involved in distinct DNA repair pathways) are highly DOX-sensitive. Moreover, LY294002, an inhibitor of PIKK kinases, showed a synergistic killing effect in cells deficient in these proteins, with a strong induction of G2/M cell cycle arrest. Taken together, these results indicate that XPA and pol eta proteins participate in cell resistance to DOX-treatment, and kinase inhibitors can selectively enhance its killing effects, probably reducing the cell ability to recover from breaks induced in DNA. (C) 2011 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Previous studies have shown that the DNA repair component Metnase (SETMAR) mediates resistance to DNA damaging cancer chemotherapy. Metnase has a nuclease domain that shares homology with the Transposase family. We therefore virtually screened the tertiary Metnase structure against the 550,000 compound ChemDiv library to identify small molecules that might dock in the active site of the transposase nuclease domain of Metnase. We identified eight compounds as possible Metnase inhibitors. Interestingly, among these candidate inhibitors were quinolone antibiotics and HIV integrase inhibitors, which share common structural features. Previous reports have described possible activity of quinolones as antineoplastic agents. Therefore, we chose the quinolone ciprofloxacin for further study, based on its wide clinical availability and low toxicity. We found that ciprofloxacin inhibits the ability of Metnase to cleave DNA and inhibits Metnase-dependent DNA repair. Ciprofloxacin on its own did not induce DNA damage, but it did reduce repair of chemotherapy-induced DNA damage. Ciprofloxacin increased the sensitivity of cancer cell lines and a xenograft tumor model to clinically relevant chemotherapy. These studies provide a mechanism for the previously postulated antineoplastic activity of quinolones, and suggest that ciprofloxacin might be a simple yet effective adjunct to cancer chemotherapy. Cancer Res; 72(23); 6200-8. (C) 2012 AACR.
Resumo:
The present study reports the identification of two new staurosporine derivatives, 2-hydroxy-7-oxostaurosporine (1) and 3-hydroxy-7-oxostaurosporine (2), obtained from mid-polar fractions of an aqueous methanol extract of the tunicate Eudistoma vannamei, endemic to the northeast coast of Brazil. The mixture of 1 and 2 displayed IC50 values in the nM range and was up to 14 times more cytotoxic than staurosporine across a panel of tumor cell lines, as evaluated using the MTT assay.
MicroRNA miR-146b-5p regulates signal transduction of TGF-beta by repressing SMAD4 in thyroid cancer
Resumo:
MicroRNAs (miRNA) are small non-coding RNAs involved in post-transcriptional gene regulation that have crucial roles in several types of tumors, including papillary thyroid carcinoma (PTC). miR-146b-5p is overexpressed in PTCs and is regarded as a relevant diagnostic marker for this type of cancer. A computational search revealed that miR-146b-5p putatively binds to the 3' untranslated region (UTR) of SMAD4, an important member of the transforming growth factor beta (TGF-beta) signaling pathway. The TGF-beta pathway is a negative regulator of thyroid follicular cell growth, and the mechanism by which thyroid cancer cells evade its inhibitory signal remains unclear. We questioned whether the modulation of the TGF-beta pathway by miR-146b-5p can contribute to thyroid tumorigenesis. Luciferase reporter assay confirmed the direct binding of miR-146b-5p on the SMAD4 3'UTR. Specific inhibition of miR-146b-5p with a locked nucleic acid-modified anti-miR-146b oligonucleotide significantly increased SMAD4 levels in the human papillary carcinoma cell lines, TPC-1 and BCPAP. Moreover, suppression of miR-146b-5p increased the cellular response to the TGF-beta anti-proliferative signal, significantly decreasing the proliferation rate. The overexpression of miR-146b-5p in normal rat follicular PCCL3 cells decreased SMAD4 levels and disrupted TGF-beta signal transduction. MiR-146b-5p overexpression in PCCL3 cells also significantly increased cell proliferation in the absence of thyroid-stimulating hormone and conferred resistance to TGF-beta-mediated cell-cycle arrest. Additionally, the activation of thyroid most common oncogenes RET/PTC3 and BRAF in PCCL3 cells upregulated miR-146b-5p expression. Our results confirm the oncogenic role of miR-146b-5p in thyroid follicular cells and contribute to knowledge regarding the modulation of TGF-beta signal transduction by miRNAs in PTCs. Oncogene (2012) 31, 1910-1922; doi:10.1038/onc.2011.381; published online 29 August 2011
Resumo:
Background: Although the molecular pathogenesis of pituitary adenomas has been assessed by several different techniques, it still remains partially unclear. Ribosomal proteins (RPs) have been recently related to human tumorigenesis, but they have not yet been evaluated in pituitary tumorigenesis. Objective: The aim of this study was to introduce serial analysis of gene expression (SAGE), a high-throughput method, in pituitary research in order to compare differential gene expression. Methods: Two SAGE cDNA libraries were constructed, one using a pool of mRNA obtained from five GH-secreting pituitary tumors and another from three normal pituitaries. Genes differentially expressed between the libraries were further validated by real-time PCR in 22 GH-secreting pituitary tumors and in 15 normal pituitaries. Results: Computer-generated genomic analysis tools identified 13 722 and 14 993 exclusive genes in normal and adenoma libraries respectively. Both shared 6497 genes, 2188 were underexpressed and 4309 overexpressed in tumoral library. In adenoma library, 33 genes encoding RPs were underexpressed. Among these, RPSA, RPS3, RPS14, and RPS29 were validated by real-time PCR. Conclusion: We report the first SAGE library from normal pituitary tissue and GH-secreting pituitary tumor, which provide quantitative assessment of cellular transcriptome. We also validated some downregulated genes encoding RPs. Altogether, the present data suggest that the underexpression of the studied RP genes possibly collaborates directly or indirectly with other genes to modify cell cycle arrest, DNA repair, and apoptosis, leading to an environment that might have a putative role in the tumorigenesis, introducing new perspectives for further studies on molecular genesis of somatotrophinomas.
Resumo:
Chemical agents used in cancer therapy are associated with cell cycle arrest, activation or deactivation of mechanisms associated to DNA repair and apoptosis. However, due to the complexity of biological systems, the molecular mechanisms responsible for these activities are not fully understood. Thus, studies about gene and protein expression have shown promising results for understanding the mechanisms related to cellular responses and regression of cancer after chemotherapy. This study aimed to evaluate the gene and protein expression profiling in bladder transitional cell carcinoma (TCC) with different TP53 status after gemcitabine (1.56 μM) treatment. The RT4 (grade 1, TP53 wild type), 5637 (grade 2, TP53 mutated) and T24 (grade 3, TP53 mutated) cell lines were used. PCR arrays and mass spectrometry were used to analyze gene and protein expression, respectively. Morphological alterations were observed using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The results of PCR array showed that gemcitabine activity was mainly related to CDKN1A, GADD45A and SERTDA1 overexpression, and BAX overexpression only in the wild type TP53 cells. Mass spectrometry demonstrated that gemcitabine modulated the protein expression, especially those from genes related to apoptosis, transport of vesicles and stress response. Analyses using SEM and TEM showed changes in cell morphology independently on the cell line studied. The observed decreased number of microvillus suggests low contact among the cells and between cell and extracellular matrix; irregular forms might indicate actin cytoskeleton deregulation; and the reduction in the amount of organelles and core size might indicate reduced cellular metabolism. In conclusion, independently on TP53 status or grade of bladder tumor, gemcitabine modulated genes related to the cell cycle and apoptosis, that reflected in morphological changes indicative of future cell death.
Resumo:
Background: Fibroblast growth factor receptor 4 (FGFR4) is a member of a receptor tyrosine kinase family of enzymes involved in cell cycle control and proliferation. A common single nucleotide polymorphism (SNP) Gly388Arg variant has been associated with increased tumor cell motility and progression of breast cancer, head and neck cancer and soft tissue sarcomas. The present study evaluated the prognostic significance of FGFR4 in oral and oropharynx carcinomas, finding an association of FGFR4 expression and Gly388Arg genotype with tumor onset and prognosis. Patients and Methods: DNA from peripheral blood of 122 patients with oral and oropharyngeal squamous cell carcinomas was used to determine FGFR4 genotype by PCR-RFLP. Protein expression was assessed by immunohistochemistry (IHC) on paraffin-embedded tissue microarrays. Results: Presence of allele Arg388 was associated with lymphatic embolization and with disease related premature death. In addition, FGFR4 low expression was related with lymph node positivity and premature relapse of disease, as well as disease related death. Conclusion: Our results propose FGFR4 profile, measured by the Gly388Arg genotype and expression, as a novel marker of prognosis in squamous cell carcinoma of the mouth and oropharynx.
Resumo:
Lipid nanoemulsions (LDE) may be used as carriers of paclitaxel (PTX) and etoposide (ETP) to decrease toxicity and increase the therapeutic action of those drugs. The current study investigates the combined chemotherapy with PTX and ETP associated with LDE. Four groups of 10-20 B16F10 melanoma-bearing mice were treated with LDE-PTX and LDE-ETP in combination (LDE-PTX + ETP), commercial PTX and ETP in combination (PTX + ETP), single LDE-PTX, and single LDE-ETP. PTX and ETX doses were 9 mu mol/kg administered in three intraperitoneal injections on three alternate days. In two control groups mice were treated with saline solution or LDE alone. Tumor growth, metastasis presence, cell-cycle distribution, blood cell counts and histological data were analyzed. Toxicity of all treatments was evaluated in mice without tumors. Tumor growth inhibition was similarly strong in all treatment groups. However, there was a greater reduction in the number of animals bearing metastases in the LDE-PTX + ETP group (30 %) in comparison to the PTX + ETP group (82 %, p < 0.05). Reduction of cellular density, blood vessels and increase of collagen fibers in tumor tissues were observed in the LDE-PTX + ETP group but not in the PTX + ETP group, and in both groups reduced melanoma-related anemia and thrombocytosis were observed. Flow cytometric analysis suggested that LDE-PTX + ETP exhibited greater selectivity to neoplastic cells than PTX-ETP, showing arrest (65 %) in the G(2)/M phase of the cell cycle (p < 0.001). Toxicity manifested by weight loss and myelosuppression was markedly milder in the LDE-PTX + ETP than in the PTX + ETP group. LDE-PTX + ETP combined drug-targeting therapy showed markedly superior anti-cancer properties and reduced toxicity compared to PTX + ETP.