8 resultados para CARBOHYDRATE-BINDING MODULE
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Cellulases participate in a number of biological events, such as plant cell wall remodelling, nematode parasitism and microbial carbon uptake. Their ability to depolymerize crystalline cellulose is of great biotechnological interest for environmentally compatible production of fuels from lignocellulosic biomass. However, industrial use of cellulases is somewhat limited by both their low catalytic efficiency and stability. In the present study, we conducted a detailed functional and structural characterization of the thermostable BsCe15A (Bacillus subtilis cellulase 5A), which consists of a GH5 (glycoside hydrolase 5) catalytic domain fused to a CBM3 (family 3 carbohydrate-binding module). NMR structural analysis revealed that the Bacillus CBM3 represents a new subfamily, which lacks the classical calcium-binding motif, and variations in NMR frequencies in the presence of cellopentaose showed the importance of polar residues in the carbohydrate interaction. Together with the catalytic domain, the CBM3 forms a large planar surface for cellulose recognition, which conducts the substrate in a proper conformation to the active site and increases enzymatic efficiency. Notably, the manganese ion was demonstrated to have a hyper-stabilizing effect on BsCel5A, and by using deletion constructs and X-ray crystallography we determined that this effect maps to a negatively charged motif located at the opposite face of the catalytic site.
Resumo:
Background: Cellulose consisting of arrays of linear beta-1,4 linked glucans, is the most abundant carbon-containing polymer present in biomass. Recalcitrance of crystalline cellulose towards enzymatic degradation is widely reported and is the result of intra-and inter-molecular hydrogen bonds within and among the linear glucans. Cellobiohydrolases are enzymes that attack crystalline cellulose. Here we report on two forms of glycosyl hydrolase family 7 cellobiohydrolases common to all Aspergillii that attack Avicel, cotton cellulose and other forms of crystalline cellulose. Results: Cellobiohydrolases Cbh1 and CelD have similar catalytic domains but only Cbh1 contains a carbohydrate-binding domain (CBD) that binds to cellulose. Structural superpositioning of Cbh1 and CelD on the Talaromyces emersonii Cel7A 3-dimensional structure, identifies the typical tunnel-like catalytic active site while Cbh1 shows an additional loop that partially obstructs the substrate-fitting channel. CelD does not have a CBD and shows a four amino acid residue deletion on the tunnel-obstructing loop providing a continuous opening in the absence of a CBD. Cbh1 and CelD are catalytically functional and while specific activity against Avicel is 7.7 and 0.5 U. mg prot-1, respectively specific activity on pNPC is virtually identical. Cbh1 is slightly more stable to thermal inactivation compared to CelD and is much less sensitive to glucose inhibition suggesting that an open tunnel configuration, or absence of a CBD, alters the way the catalytic domain interacts with the substrate. Cbh1 and CelD enzyme mixtures on crystalline cellulosic substrates show a strong combinatorial effort response for mixtures where Cbh1 is present in 2: 1 or 4: 1 molar excess. When CelD was overrepresented the combinatorial effort could only be partially overcome. CelD appears to bind and hydrolyze only loose cellulosic chains while Cbh1 is capable of opening new cellulosic substrate molecules away from the cellulosic fiber. Conclusion: Cellobiohydrolases both with and without a CBD occur in most fungal genomes where both enzymes are secreted, and likely participate in cellulose degradation. The fact that only Cbh1 binds to the substrate and in combination with CelD exhibits strong synergy only when Cbh1 is present in excess, suggests that Cbh1 unties enough chains from cellulose fibers, thus enabling processive access of CelD.
Resumo:
Lectins are carbohydrate-binding proteins of non-imune origin. This group of proteins is distributed widely in nature and they have been found in viruses, microorganisms, plants and animals. Lectins of plants have been isolated and characterized according to their chemical, physical-chemical, structural and biological properties. Among their biological activities, we can stress its fungicidal action. It has been previously described the effect of the lectins Dviol, DRL, ConBr and LSL obtained from the seeds of leguminous plants on the growth of yeasts isolated from vaginal secretions. In the present work the experiments were carried out in microtiter plates and the results interpreted by both methods: visual observations and a microplate reader at 530nm. The lectin concentrations varied from 0.5 to 256 mu g/mL, and the inoculum was established between 65-70% of trammitance. All yeast samples isolated from vaginal secretion were evaluated taxonomically, where were observed macroscopic and microscopic characteristics to each species. The LSL lectin did not demonstrate any antifungal activity to any isolate studied. The other lectins DRL, ConBr and DvioL, showed antifungal potential against yeast isolated from vaginal secretion. These findings offering offer a promising field of investigation to develop new therapeutic strategies against vaginal yeast infections, collaborating to improve women's health.
Resumo:
Toxosplasma gondii is the model parasite of the phylum Apicomplexa, which contains numerous obligate intracellular parasites of medical and veterinary importance, including Eimeria, Sarcocystis, Cryptosporidium, Cyclospora, and Plasmodium species. Members of this phylum actively enter host cells by a multistep process with the help of microneme protein (MIC) complexes that play important roles in motility, host cell attachment, moving junction formation, and invasion. T. gondii (Tg)MIC1-4-6 complex is the most extensively investigated microneme complex, which contributes to host cell recognition and attachment via the action of TgMIC1, a sialic acid-binding adhesin. Here, we report the structure of TgMIC4 and reveal its carbohydrate-binding specificity to a variety of galactose-containing carbohydrate ligands. The lectin is composed of six apple domains in which the fifth domain displays a potent galactose-binding activity, and which is cleaved from the complex during parasite invasion. We propose that galactose recognition by TgMIC4 may compromise host protection from galectin-mediated activation of the host immune system.
Resumo:
Lectins are carbohydrate-binding proteins of non-imune origin. This group of proteins is distributed widely in nature and they have been found in viruses, microorganisms, plants and animals. Lectins of plants have been isolated and characterized according to their chemical, physical-chemical, structural and biological properties. Among their biological activities, we can stress its fungicidal action. It has been previously described the effect of the lectins Dviol, DRL, ConBr and LSL obtained from the seeds of leguminous plants on the growth of yeasts isolated from vaginal secretions. In the present work the experiments were carried out in microtiter plates and the results interpreted by both methods: visual observations and a microplate reader at 530nm. The lectin concentrations varied from 0.5 to 256µg/mL, and the inoculum was established between 65-70% of trammitance. All yeast samples isolated from vaginal secretion were evaluated taxonomically, where were observed macroscopic and microscopic characteristics to each species. The LSL lectin did not demonstrate any antifungal activity to any isolate studied. The other lectins DRL, ConBr and DvioL, showed antifungal potential against yeast isolated from vaginal secretion. These findings offering offer a promising field of investigation to develop new therapeutic strategies against vaginal yeast infections, collaborating to improve women's health.
Resumo:
Mannose-binding lectin (MBL) is a protein able to bind to carbohydrate patterns on pathogen membranes; upon MBL binding, its associated serine protease MBL-associated serine protease type 2 (MASP2) is autoactivated, promoting the activation of complement via the lectin pathway. For both MBL2 and MASP2 genes, the frequencies of polymorphisms are extremely variable between different ethnicities, and this aspect has to be carefully considered when performing genetic studies. While polymorphisms in the MBL-encoding gene (MBL2) have been associated, depending upon ethnicity, with several diseases in different populations, little is known about the distribution of MASP2 gene polymorphisms in human populations. The aim of our study was thus to determine the frequencies of MBL2 (exon 1 and promoter) and MASP2 (p.D371Y) polymorphisms in a Brazilian population from Rio de Janeiro. A total of 294 blood donor samples were genotyped for 27 polymorphisms in the MBL2 gene by direct sequencing of a region spanning from the promoter polymorphism H/L rs11003125 to the rs1800451 polymorphism (at codon 57 in the first exon of the gene). Genotyping for MASP2 p.D371Y was carried out using fluorogenic probes. To our knowledge, this is the first study reporting the prevalence of the MASP2 p.D371Y polymorphism in a Brazilian population. The C allele frequency 39% is something intermediate between the reported 14% in Europeans and 90% in Sub-Saharan Africans. MBL2 polymorphisms frequencies were quite comparable to those previously reported for admixed Brazilians. Both MBL2 and MASP2 polymorphisms frequencies reported in our study for the admixed Brazilian population are somehow intermediate between those reported in Europeans and Africans, reflecting the ethnic composition of the southern Brazilian population, estimated to derive from an admixture of Caucasian (31%), African (34%) and Native American (33%) populations. In conclusion, our population genetic study describes the frequencies of MBL2 and MASP2 functional SNPs in a population from Rio de Janeiro, with the aim of adding new information concerning the distribution of these SNPs in a previously unanalysed Brazilian population, thus providing a new genetic tool for the evaluation of the association of MBL2 and MASP2 functional SNPs with diseases in Brazil, with particular emphasis on the state of Rio de Janeiro.
Resumo:
Mannan-binding lectin (MBL) is an important protein of the innate immune system and protects the body against infection through opsonization and activation of the complement system on surfaces with an appropriate presentation of carbohydrate ligands. The quaternary structure of human MBL is built from oligomerization of structural units into polydisperse complexes typically with three to eight structural units, each containing three lectin domains. Insight into the connection between the structure and ligand-binding properties of these oligomers has been lacking. In this article, we present an analysis of the binding to neoglycoprotein-coated surfaces by size-fractionated human MBL oligomers studied with small-angle x-ray scattering and surface plasmon resonance spectroscopy. The MBL oligomers bound to these surfaces mainly in two modes, with dissociation constants in the micro to nanomolar order. The binding kinetics were markedly influenced by both the density of ligands and the number of ligand-binding domains in the oligomers. These findings demonstrated that the MBL-binding kinetics are critically dependent on structural characteristics on the nanometer scale, both with regard to the dimensions of the oligomer, as well as the ligand presentation on surfaces. Therefore, our work suggested that the surface binding of MBL involves recognition of patterns with dimensions on the order of 10-20 nm. The recent understanding that the surfaces of many microbes are organized with structural features on the nanometer scale suggests that these properties of MBL ligand recognition potentially constitute an important part of the pattern-recognition ability of these polyvalent oligomers. The Journal of Immunology, 2012, 188: 1292-1306.
Resumo:
Abstract Background All organisms living under aerobic atmosphere have powerful mechanisms that confer their macromolecules protection against oxygen reactive species. Microorganisms have developed biomolecule-protecting systems in response to starvation and/or oxidative stress, such as DNA biocrystallization with Dps (DNA-binding protein from starved cells). Dps is a protein that is produced in large amounts when the bacterial cell faces harm, which results in DNA protection. In this work, we evaluated the glycosylation in the Dps extracted from Salmonella enterica serovar Typhimurium. This Dps was purified from the crude extract as an 18-kDa protein, by means of affinity chromatography on an immobilized jacalin column. Results The N-terminal sequencing of the jacalin-bound protein revealed 100% identity with the Dps of S. enterica serovar Typhimurium. Methyl-alpha-galactopyranoside inhibited the binding of Dps to jacalin in an enzyme-linked lectin assay, suggesting that the carbohydrate recognition domain (CRD) of jacalin is involved in the interaction with Dps. Furthermore, monosaccharide compositional analysis showed that Dps contained mannose, glucose, and an unknown sugar residue. Finally, jacalin-binding Dps was detected in larger amounts during the bacterial earlier growth periods, whereas high detection of total Dps was verified throughout the bacterial growth period. Conclusion Taken together, these results indicate that Dps undergoes post-translational modifications in the pre- and early stationary phases of bacterial growth. There is also evidence that a small mannose-containing oligosaccharide is linked to this bacterial protein.