5 resultados para CACHACAS
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Multivariate analyses of UV-Vis spectral data from cachaca wood extracts provide a simple and robust model to classify aged Brazilian cachacas according to the wood species used in the maturation barrels. The model is based on inspection of 93 extracts of oak and different Brazilian wood species by a non-aged cachaca used as an extraction solvent. Application of PCA (Principal Components Analysis) and HCA (Hierarchical Cluster Analysis) leads to identification of 6 clusters of cachaca wood extracts (amburana, amendoim, balsamo, castanheira, jatoba, and oak). LDA (Linear Discriminant Analysis) affords classification of 10 different wood species used in the cachaca extracts (amburana, amendoim, balsamo, cabreuva-parda, canela-sassafras, castanheira, jatoba, jequitiba-rosa, louro-canela, and oak) with an accuracy ranging from 80% (amendoim and castanheira) to 100% (balsamo and jequitiba-rosa). The methodology provides a low-cost alternative to methods based on liquid chromatography and mass spectrometry to classify cachacas aged in barrels that are composed of different wood species.
Resumo:
Concentrations of 39 organic compounds were determined in three fractions (head, heart and tail) obtained from the pot still distillation of fermented sugarcane juice. The results were evaluated using analysis of variance (ANOVA), Tukey's test, principal component analysis (PCA), hierarchical cluster analysis (HCA) and linear discriminant analysis (LDA). According to PCA and HCA, the experimental data lead to the formation of three clusters. The head fractions give rise to a more defined group. The heart and tail fractions showed some overlap consistent with its acid composition. The predictive ability of calibration and validation of the model generated by LDA for the three fractions classification were 90.5 and 100%, respectively. This model recognized as the heart twelve of the thirteen commercial cachacas (92.3%) with good sensory characteristics, thus showing potential for guiding the process of cuts.
Resumo:
IDENTIFICATION OF ETHANOLIC WOOD EXTRACTS USING ELECTRONIC ABSORPTION SPECTRUM AND MULTIVARIATE ANALYSIS. The application of multivariate analysis to spectrophotometric (UV) data was explored for distinguishing extracts of cachaca woods commonly used in the manufacture of casks for aging cachacas (oak, cabretiva-parda, jatoba, amendoim and canela-sassafras). Absorbances close to 280 nm were more strongly correlated with oak and jatoba woods, whereas absorbances near 230 nm were more correlated with canela-sassafras and cabretiva-parda. A comparison between the spectrophotometric model and the model based on chromatographic (HPLC-DAD) data was carried out. The spectrophotometric model better explained the variance data (PC1 + PC2 = 91%) exhibiting potential as a routine method for checking aged spirits.
Resumo:
CHEMICAL PROFILE COMPARISON OF SUGARCANE SPIRITS FROM THE SAME WINE DISTILLED IN ALEMBICS AND COLUMNS. Six wines were distilled in two different distillation apparatus (alembic and column) producing 24 distillates (6 for each alembic fraction - head, heart and tail; 6 column distillates). The chemical composition of distillates from the same wine was determined using chromatographic techniques. Analytical data were subjected to Principal Component Analysis (PCA) and Hierarchical Cluster Analysis (HCA) allowing discrimination of four clusters according to chemical profiles. Both distillation processes influenced the sugarcane spirits chemical quality since two types of distillates with different quantitative chemical profiles were produced after the elimination of fermentation step influence.
Resumo:
The aim of this study was to verify the effect of a double distillation on the reduction of the ethyl carbamate content in sugar cane spirit. Ethyl carbamate is a potentially carcinogenic compound normally present at critical levels in sugar cane spirit, constituting a public health problem and therefore hindering the export of this beverage. The ethanol, copper and ethyl carbamate contents were evaluated, using gas chromatography/mass spectroscopy, during a double distillation of the fermented sugar cane juice. The distillate fraction from the first distillation accumulated 30% of the ethyl carbamate formed. In the second distillation, the ethyl carbamate and the copper content increased during the process as the alcohol content decreased, and only 3% of the ethyl carbamate formed was collected in the spirit. Double distillation decreased the ethyl carbamate content in the sugar cane spirit by 97%. (C) Copyright 2012 The Institute of Brewing & Distilling