36 resultados para Blood glucose
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
This article reports, in a systemized and analytical way, the experience of an Outreach Program in the period between 2010 and 2011. The study focused on health education interventions as strategies to improve the adherence of individuals with insulin- dependent diabetes mellitus (IDDM), clients of a blood glucose self-Monitoring program. In addition, we intended to contribute to the reorganization of the program's working processes in the unit. Health education strategies were used in both educational groups and home visits, thus permitting the provision of care that was more individualized. Data regarding the clients were organized on a spreadsheet and in files for the Family Health teams, which made it easier to identify the patients, including those who were absent, helping to decentralize the care. By using health education strategies, we intended to contribute to a more comprehensive and emancipatory care of the clients, aimed at a continuous reflection of the workers regarding their practices.
Resumo:
Background: In this study we evaluated the effects of carnitine and vitamin E supplementation on blood glucose levels in young rats submitted to exhaustive exercise stress. Methods: Wistar rats were divided into four groups: 1) control group; 2) exercise stress group; 3) exercise stress + Vitamin E and; 4) exercise stress + carnitine group. Rats from the group 3 and 4 were treated with gavage administration of 1 mL of Vitamin E (5mg/kg) and carnitine (5mg/kg) for seven consecutive days. Animals from groups 2, 3 and 4 were submitted to a bout of swimming exhaustive exercise stress. We analyzed blood glucose levels after exercise stress. Results: Blood glucose levels after exercise stress were significantly increased in the groups treated with Vitamine E and carnitine (control group: 98.7 +/- 9mg/dL vs. stress group: 84.2 +/- 11 mg/dL vs. carnitine + stress group: 147.4 +/- 15 mg/dL vs. vintamin E + stress: 158.3 +/- 7 mg/dL; p<0.0001). Conclusion: Vitamin E and carnitine supplementation attenuate the hypoglycemia induced by exercise in young rats submitted to exhaustive exercise stress.
Resumo:
Background: Admission hyperglycaemia is associated with mortality in patients with acute coronary syndrome (ACS), but controversy exists whether hyperglycaemia uniformly affects both genders. We evaluated coronary risk factors, gender, hyperglycaemia and their effect on hospital mortality. Methods: 959 ACS patients (363 women and 596 men) were grouped based on glycaemia >= or < 200 mg/dL and gender: men with glucose < 200 mg/dL (menG-); women with glucose < 200 mg/dL (womenG-); men with glucose >= 200 mg/dL (menG+); and women with glucose >= 200 mg/dL (womenG+). A logistic regression analysis compared the relation between gender and glycaemia groups and death, adjusted for coronary risk factors and laboratory data. Results group: menG- had lower mortality than menG+ (OR = 0.172, IC95% 0.062-0.478), and womenG+ (OR = 0.275, IC95% 0.090-0.841); womenG- mortality was lower than menG+ (OR = 0.230, IC95% 0.074-0.717). No difference was found between menG+ vs womenG+ (p = 0.461), or womenG- vs womenG+ (p = 0.110). Age (OR = 1.067, IC95% 1.031-1.104), EF (OR = 0.942, IC95% 0.915-0.968), and serum creatinine (OR = 1.329, IC95% 1.128-1.566) were other independent factors related to in-hospital death. Conclusions: Death was greater in hyperglycemic men compared to lower blood glucose men and women groups, but there was no differences between women groups in respect to glycaemia after adjustment for coronary risk factors.
Resumo:
Background: This pilot study aimed to verify if glycemic control can be achieved in type 2 diabetes patients after acute myocardial infarction (AMI), using insulin glargine (iGlar) associated with regular insulin (iReg), compared with the standard intensive care unit protocol, which uses continuous insulin intravenous delivery followed by NPH insulin and iReg (St. Care). Patients and Methods: Patients (n = 20) within 24 h of AMI were randomized to iGlar or St. Care. Therapy was guided exclusively by capillary blood glucose (CBG), but glucometric parameters were also analyzed by blinded continuous glucose monitoring system (CGMS). Results: Mean glycemia was 141 +/- 39 mg/dL for St. Care and 132 +/- 42 mg/dL for iGlar by CBG or 138 +/- 35 mg/dL for St. Care and 129 +/- 34 mg/dL for iGlar by CGMS. Percentage of time in range (80-180 mg/dL) by CGMS was 73 +/- 18% for iGlar and 77 +/- 11% for St. Care. No severe hypoglycemia (<= 40 mg/dL) was detected by CBG, but CGMS indicated 11 (St. Care) and seven (iGlar) excursions in four subjects from each group, mostly in sulfonylurea users (six of eight patients). Conclusions: This pilot study suggests that equivalent glycemic control without increase in severe hyperglycemia may be achieved using iGlar with background iReg. Data outputs were controlled by both CBG and CGMS measurements in a real-life setting to ensure reliability. Based on CGMS measurements, there were significant numbers of glycemic excursions outside of the target range. However, this was not detected by CBG. In addition, the data indicate that previous use of sulfonylurea may be a potential major risk factor for severe hypoglycemia irrespective of the type of insulin treatment.
Resumo:
Background: Glucose transporter 4 (GLUT4) is highly expressed in muscle and fat tissue, where triiodothyronine (T-3) induces solute carrier family 2 facilitated glucose transporter member 4 (SLC2A4) gene transcription. T-3 was also shown to rapidly increase glucose uptake in myocytes exposed to cycloheximide, indicating that it might act nongenomically to regulate GLUT4 availability. We tested this hypothesis by evaluating, in thyroidectomized rats (Tx rats), the acute and/or chronic T-3 effects on GLUT4 mRNA expression and polyadenylation, protein content, and trafficking to the plasma membrane (PM) in skeletal muscle, as well as on blood glucose disappearance rate (kITT) after insulin administration. Methods: Rats were surgically thyroidectomized and treated with T-3 (0.3 to 100 mu g/100 g body weight) from 10 minutes to 5 days, and killed thereafter. Sham-operated (SO) rats were used as controls. Total RNA was extracted from the skeletal muscles (soleus [SOL] and extensorum digitalis longus [EDL]) and subjected to Northern blotting analysis using rat GLUT4 cDNA probe. Total protein was extracted and subjected to specific centrifugations for subcellular fractionation, and PM as well as microsomal (M) fractions were subjected to Western blotting analysis, using anti-GLUT4 antiserum as a probe. GLUT4 mRNA polyadenylation was examined by a rapid amplification of cDNA ends-poly(A) test (RACE-PAT). Results: Thyroidectomy reduced skeletal muscle GLUT4 mRNA, mRNA poly(A) tail length, protein content, and trafficking to the PM, as well as the kITT. The acute T-3 treatment rapidly (30 minutes) increased all these parameters compared with Tx rats. The 5-day T-3 treatment increased GLUT4 mRNA and protein expression, and restored GLUT4 trafficking to the PM and kITT to SO values. Conclusions: The results presented here show for the first time that, in parallel to its transcriptional action on the SLC2A4 gene, T-3 exerts a rapid post-transcriptional effect on GLUT4 mRNA polyadenylation, which might increase transcript stability and translation efficiency, leading to the increased GLUT4 content and availability to skeletal muscle, as well as on GLUT4 translocation to the PM, improving the insulin sensitivity, as shown by the kITT.
Resumo:
Background: Exercise training (ET) can reduce blood pressure (BP) and prevent functional disability. However, the effects of low volumes of training have been poorly studied, especially in elderly hypertensive patients. Objectives: To investigate the effects of a multi-component ET program (aerobic training, strength, flexibility, and balance) on BP, physical fitness, and functional ability of elderly hypertensive patients. Methods: Thirty-six elderly hypertensive patients with optimal clinical treatment underwent a multi-component ET program: two 60-minute sessions a week for 12 weeks at a Basic Health Unit. Results: Compared to pre-training values, systolic and diastolic BP were reduced by 3.6% and 1.2%, respectively (p < 0.001), body mass index was reduced by 1.1% (p < 0.001), and peripheral blood glucose was reduced by 2.5% (p= 0.002). There were improvements in all physical fitness domains: muscle strength (chair-stand test and elbow flexor test; p < 0.001), static balance test (unipedal stance test; p < 0.029), aerobic capacity (stationary gait test; p < 0.001), except for flexibility (sit and reach test). Moreover, there was a reduction in the time required to perform two functional ability tests: "put on sock" and "sit down, stand up, and move around the house" (p < 0.001). Conclusions: Lower volumes of ET improved BP, metabolic parameters, and physical fitness and reflected in the functional ability of elderly hypertensive patients. Trial Registration RBR-2xgjh3.
Resumo:
The Kallikrein-Kinin System (KKS) has been implicated in several aspects of metabolism, including the regulation of glucose homeostasis and adiposity. Kinins and des-Arg-kinins are the major effectors of this system and promote their effects by binding to two different receptors, the kinin B2 and B1 receptors, respectively. To understand the influence of the KKS on the pathophysiology of obesity and type 2 diabetes (T2DM), we generated an animal model deficient for both kinin receptor genes and leptin (obB1B2KO). Six-month-old obB1B2KO mice showed increased blood glucose levels. Isolated islets of the transgenic animals were more responsive to glucose stimulation releasing greater amounts of insulin, mainly in 3-month-old mice, which was corroborated by elevated serum C-peptide concentrations. Furthermore, they presented hepatomegaly, pronounced steatosis, and increased levels of circulating transaminases. This mouse also demonstrated exacerbated gluconeogenesis during the pyruvate challenge test. The hepatic abnormalities were accompanied by changes in the gene expression of factors linked to glucose and lipid metabolisms in the liver. Thus, we conclude that kinin receptors are important for modulation of insulin secretion and for the preservation of normal glucose levels and hepatic functions in obese mice, suggesting a protective role of the KKS regarding complications associated with obesity and T2DM.
Resumo:
OBJECTIVE: To assess the metabolic control of diabetes mellitus patients registered in a capillary glucose self-monitoring program at home. METHODS: In this longitudinal retrospective study, 97 subjects at four health institutions in a Brazilian city were followed during 37 months between 2005 and 2008. The health files were analyzed of patients selected to register the evolution of variables related to capillary glucose self-monitoring at home and metabolic control of diabetes mellitus. RESULTS: During the assessment, both mean and monthly percentages of capillary blood glucose measurements at home decreased from 34.1 (65.1%) to 33.6 (64.8%), respectively (p <0.001). Mean HbA1c levels dropped from 9.20% to 7.94% (p<0.001). HDL cholesterol decreased from 51 mg/dl to 47 mg/dl (p=0.001). CONCLUSION: Patients' metabolic control improved, characterized by a significant reduction in HbA1C.
Resumo:
The objective of this study was to investigate the impact of elevated tissue omega-3 (n-3) polyunsaturated fatty acids (PUFA) status on age-related glucose intolerance utilizing the fat-1 transgenic mouse model, which can endogenously synthesize n-3 PUFA from omega-6 (n-6) PUFA. Fat-1 and wild-type mice, maintained on the same dietary regime of a 10% corn oil diet, were tested at two different ages (2months old and 8months old) for various glucose homeostasis parameters and related gene expression. The older wild-type mice exhibited significantly increased levels of blood insulin, fasting blood glucose, liver triglycerides, and glucose intolerance, compared to the younger mice, indicating an age-related impairment of glucose homeostasis. In contrast, these age-related changes in glucose metabolism were largely prevented in the older fat-1 mice. Compared to the older wild-type mice, the older fat-1 mice also displayed a lower capacity for gluconeogenesis, as measured by pyruvate tolerance testing (PTT) and hepatic gene expression of phosphoenolpyruvate carboxykinase (PEPCK) and glucose 6 phosphatase (G6Pase). Furthermore, the older fat-1 mice showed a significant decrease in body weight, epididymal fat mass, inflammatory activity (NFκ-B and p-IκB expression), and hepatic lipogenesis (acetyl-CoA carboxylase (ACC) and fatty acid synthase (FAS) expression), as well as increased peroxisomal activity (70-kDa peroxisomal membrane protein (PMP70) and acyl-CoA oxidase1 (ACOX1) expression). Altogether, the older fat-1 mice exhibit improved glucose homeostasis in comparison to the older wild-type mice. These findings support the beneficial effects of elevated tissue n-3 fatty acid status in the prevention and treatment of age-related chronic metabolic diseases
Resumo:
The molecular integration of nutrient-and pathogen-sensing pathways has become of great interest in understanding the mechanisms of insulin resistance in obesity. The double-stranded RNA-dependent protein kinase (PKR) is one candidate molecule that may provide cross talk between inflammatory and metabolic signaling. The present study was performed to determine, first, the role of PKR in modulating insulin action and glucose metabolism in physiological situations, and second, the role of PKR in insulin resistance in obese mice. We used Pkr(-/-) and Pkr(+/+) mice to investigate the role of PKR in modulating insulin sensitivity, glucose metabolism, and insulin signaling in liver, muscle, and adipose tissue in response to a high-fat diet. Our data show that in lean Pkr(-/-) mice, there is an improvement in insulin sensitivity, and in glucose tolerance, and a reduction in fasting blood glucose, probably related to a decrease in protein phosphatase 2A activity and a parallel increase in insulin-induced thymoma viral oncogene-1 (Akt) phosphorylation. PKR is activated in tissues of obese mice and can induce insulin resistance by directly binding to and inducing insulin receptor substrate (IRS)-1 serine307 phosphorylation or indirectly through modulation of c-Jun N-terminal kinase and inhibitor of kappa B kinase beta. Pkr(-/-) mice were protected from high-fat diet-induced insulin resistance and glucose intolerance and showed improved insulin signaling associated with a reduction in c-Jun N-terminal kinase and inhibitor of kappa B kinase beta phosphorylation in insulin-sensitive tissues. PKR may have a role in insulin sensitivity under normal physiological conditions, probably by modulating protein phosphatase 2A activity and serine-threonine kinase phosphorylation, and certainly, this kinase may represent a central mechanism for the integration of pathogen response and innate immunity with insulin action and metabolic pathways that are critical in obesity. (Endocrinology 153:5261-5274, 2012)
Resumo:
Introduction: Persistently high glycemic levels are extremely harmful to the organism and can lead patients to several complications of diabetes mellitus. Glycated hemoglobin represents the glycemic levels for what patient is chronically exposed. Methods: Two virtual databases were surveyed in two languages: Portuguese and English. 12 articles were selected and reviewed. Results and discussion: The HbA1c is used since 1958 in the assessment of glycemic control in diabetic patients. It is formed by a chemical reaction between hemoglobin A and acarbohydrate. Each percentage point of glycated hemoglobin represents approximately 35mg/dL in patient's averageglycemia. Conclusion: The glycated hemoglobin should be measured at least twice per year in patients with diabetes in general. In case of change of hypoglycemic therapy, this frequency should be doubled.
Resumo:
In this study, we investigated the effect of glutamine (Gln) supplementation on the signaling pathways regulating protein synthesis and protein degradation in the skeletal muscle of rats with streptozotocin (STZ)-induced diabetes. The expression levels of key regulatory proteins in the synthetic pathways (Akt, mTOR, GSK3 and 4E-BP1) and the degradation pathways (MuRF-1 and MAFbx) were determined using real-time PCR and Western blotting in four groups of male Wistar rats; 1) control, non-supplemented with glutamine; 2) control, supplemented with glutamine; 3) diabetic, non-supplemented with glutamine; and 4) diabetic, supplemented with glutamine. Diabetes was induced by the intravenous injection of 65 mg/kg bw STZ in citrate buffer (pH 4.2); the non-diabetic controls received only citrate buffer. After 48 hours, diabetes was confirmed in the STZ-treated animals by the determination of blood glucose levels above 200 mg/dL. Starting on that day, a solution of 1 g/kg bw Gln in phosphate buffered saline (PBS) was administered daily via gavage for 15 days to groups 2 and 4. Groups 1 and 3 received only PBS for the same duration. The rats were euthanized, and the soleus muscles were removed and homogenized in extraction buffer for the subsequent measurement of protein and mRNA levels. The results demonstrated a significant decrease in the muscle Gln content in the diabetic rats, and this level increased toward the control value in the diabetic rats receiving Gln. In addition, the diabetic rats exhibited a reduced mRNA expression of regulatory proteins in the protein synthesis pathway and increased expression of those associated with protein degradation. A reduction in the skeletal muscle mass in the diabetic rats was observed and was alleviated partially with Gln supplementation. The data suggest that glutamine supplementation is potentially useful for slowing the progression of muscle atrophy in patients with diabetes.
Resumo:
The objective of this study was to evaluate the mid-term outcomes of the laparoscopic ileal interposition into the jejunum (JII-SG) or into the duodenum (DII-SG) associated with sleeve gastrectomy for type 2 diabetes mellitus (T2DM) patients with BMI below 35. The procedures were performed on 202 consecutive patients. Mean age was 52.2 +/- 7.5. Mean duration of T2DM was 9.8 +/- 5.2 years. Insulin therapy was used by 41.1%. Dyslipidemia was observed in 78.2%, hypertension in 67.3%, nephropathy in 49.5%, retinopathy in 31.2%, coronary heart disease in 11.9%, and other cardiovascular events in 12.9%. Mean follow-up was 39.1 months (range, 25-61). Early and late mortality was 0.99% and 1.0%, respectively. Early reoperation was performed in 2.5%. Early and late major complications were 8.4% and 3.5%. Early most frequent complications were pneumonia and ileus. Intestinal obstruction was diagnosed in 1.5%. Mean BMI decreased from 29.7 to 23.5 kg/m(2), mean fasting glucose from 202.1 to 112.2 mg/dl, and mean postprandial glucose from 263.3 to 130 mg/dl. Triglycerides diminished from a mean of 273.4 to 110.3 mg/dl and cholesterol from a mean of 204.7 to 160.1 mg/dl. Hypertension was resolved in 87.5%. Mean hemoglobin A(1c) (HbA(1c)) decreased from 8.7 to 6.2% after the JII-SG and to 5.9% following the DII-SG. HbA(1c) below 7% was seen in 89.9% of the patients and below 6.5% in 78.3%. Overall, 86.4% of patients were off antidiabetic medications. Both JII-SG and DII-SG demonstrated to be safe, effective, and long-lasting alternatives for the treatment of T2DM patients with BMI < 35. Beyond glycemic control, other benefits were achieved.
Resumo:
Metabolic disturbances are quite common in critically ill patients. Glycemic control appears to be an important adjuvant therapy in such patients. In addition, disorders of lipid metabolism are associated with worse prognoses. The purpose of this study was to investigate the effects that two different glycemic control protocols have on lipid profile and metabolism. We evaluated 63 patients hospitalized for severe sepsis or septic shock, over the first 72 h of intensive care. Patients were randomly allocated to receive conservative glycemic control (target range 140-180 mg/dl) or intensive glycemic control (target range 80-110 mg/dl). Serum levels of low-density lipoprotein, high-density lipoprotein, triglycerides, total cholesterol, free fatty acids, and oxidized low-density lipoprotein were determined. In both groups, serum levels of low-density lipoprotein, high-density lipoprotein, and total cholesterol were below normal, whereas those of free fatty acids, triglycerides, and oxidized low-density lipoprotein were above normal. At 4 h after admission, free fatty acid levels were higher in the conservative group than in the intensive group, progressively decreasing in both groups until hour 48 and continuing to decrease until hour 72 only in the intensive group. Oxidized low-density lipoprotein levels were elevated in both groups throughout the study period. Free fatty acids respond to intensive glycemic control and, because of their high toxicity, can be a therapeutic target in patients with sepsis.