5 resultados para Biogenic particles
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
The Large Scale Biosphere Atmosphere Experiment in Amazonia (LBA) is a long term (20 years) research effort aimed at the understanding of the functioning of the Amazonian ecosystem. In particular, the strong biosphere-atmosphere interaction is a key component looking at the exchange processes between vegetation and the atmosphere, focusing on aerosol particles. Two aerosol components are the most visible: The natural biogenic emissions of aerosols and VOCs, and the biomass burning emissions. A large effort was done to characterize natural biogenic aerosols that showed detailed organic characterization and optical properties. The biomass burning component in Amazonia is important in term of aerosol and trace gases emissions, with deforestation rates decreasing, from 27,000 Km2 in 2004 to about 5,000 Km2 in 2011. Biomass burning emissions in Amazonia increases concentrations of aerosol particles, CO, ozone and other species, and also change the surface radiation balance in a significant way. Long term monitoring of aerosols and trace gases were performed in two sites: a background site in Central Amazonia, 55 Km North of Manaus (called ZF2 ecological reservation) and a monitoring station in Porto Velho, Rondonia state, a site heavily impacted by biomass burning smoke. Several instruments were operated to measured aerosol size distribution, optical properties (absorption and scattering at several wavelengths), composition of organic (OC/EC) and inorganic components among other measurements. AERONET and MODIS measurements from 5 long term sites show a large year-to year variability due to climatic and socio-economic issues. Aerosol optical depths of more than 4 at 550nm was observed frequently over biomass burning areas. In the pristine Amazonian atmosphere, aerosol scattering coefficients ranged between 1 and 200 Mm-1 at 450 nm, while absorption ranged between 1 and 20 Mm-1 at 637 nm. A strong seasonal behavior was observed, with greater aerosol loadings during the dry season (Jul-Nov) as compared to the wet season (Dec-Jun). During the wet season in Manaus, aerosol scattering (450 nm) and absorption (637 nm) coefficients averaged, respectively, 14 and 0.9 Mm-1. Angstrom exponents for scattering were lower during the wet season (1.6) in comparison to the dry season (1.9), which is consistent with the shift from biomass burning aerosols, predominant in the fine mode, to biogenic aerosols, predominant in the coarse mode. Single scattering albedo, calculated at 637 nm, did not show a significant seasonal variation, averaging 0.86. In Porto Velho, even in the wet season it was possible to observe an impact from anthropogenic aerosol. Black Carbon was measured at a high 20 ug/m³ in the dry season, showing strong aerosol absorption. This work presents a general description of the aerosol optical properties in Amazonia, both during the Amazonian wet and dry seasons.
Resumo:
The fine particles serving as cloud condensation nuclei in pristine Amazonian rainforest air consist mostly of secondary organic aerosol. Their origin is enigmatic, however, because new particle formation in the atmosphere is not observed. Here, we show that the growth of organic aerosol particles can be initiated by potassium-salt-rich particles emitted by biota in the rainforest. These particles act as seeds for the condensation of low- or semi-volatile organic compounds from the atmospheric gas phase or multiphase oxidation of isoprene and terpenes. Our findings suggest that the primary emission of biogenic salt particles directly influences the number concentration of cloud condensation nuclei and affects the microphysics of cloud formation and precipitation over the rainforest.
Resumo:
The Large Scale Biosphere Atmosphere Experiment in Amazonia (LBA) is a long-term (20 years) research effort aimed at the understanding of the functioning of the Amazonian ecosystem. The strong biosphere-atmosphere interaction is a key component of the ecosystem functioning. Two aerosol components are the most visible: The natural biogenic emissions of particles and VOCs, and the biomass burning emissions. Two aerosol and trace gases monitoring stations were operated for 4 years in Manaus and Porto Velho, two very distinct sites, with different land use change. Manaus is a very clean and pristine site and Porto Velho is representative of heavy land use change in Amazonia. Aerosol composition, optical properties, size distribution, vertical profiling and optical depth were measured from 2008 to 2012. Aerosol radiative forcing was calculated over large areas. It was observed that the natural biogenic aerosol has significant absorption properties. Organic aerosol dominates the aerosol mass with 80 to 95%. Light scattering and light absorption shows an increase by factor of 10 from Manaus to Porto Velho. Very few new particle formation events were observed. Strong links between aerosols and VOC emissions were observed. Aerosol radiative forcing in Rondonia shows a high -15 watts/m² during the dry season of 2010, showing the large impacts of aerosol loading in the Amazonian ecosystem. The increase in diffuse radiation changes the forest carbon uptake by 20 to 35%, a large increase in this important ecosystem.
Resumo:
Some organisms that live just below the sea surface (the neuston) are known more as a matter of curiosity than as critical players in biogeochemical cycles. The hypothesis of this work is that their existence implies that they receive some food from an upward flux of organic matter. The behaviour of these organisms and of the associated organic matter, hereafter mentioned as floating biogenic material (FBM) is explored using a global physical-biogeochemical coupled model, in which its generation is fixed to 1% of primary production, and decay rate is of the order of I month. The model shows that the distribution of FBM should depart rapidly from that of primary production.. and be more sensitive to circulation patterns than to the distribution of primary production. It is trapped in convergence areas, where it reaches concentrations larger by a factor 10 than in divergences, thus enhancing and inverting the contrast between high and low primary productivity areas. Attention is called on the need to better understand the biogeochemical processes in the first meter of the ocean, as they may impact the distribution of food for fishes, as well as the conditions for air-sea exchange and for the interpretation of sea color.
Resumo:
In this analysis a 3.5 years data set of aerosol and precipitation chemistry, obtained in a remote site in Central Amazonia (Balbina, (1A degrees 55' S, 59A degrees 29' W, 174 m a.s.l.), about 200 km north of Manaus) is discussed. Aerosols were sampled using stacked filter units (SFU), which separate fine (d < 2.5 mu m) and coarse mode (2.5 mu m < d < 10.0 mu m) aerosol particles. Filters were analyzed for particulate mass (PM), Equivalent Black Carbon (BCE) and elemental composition by Particle Induced X-Ray Emission (PIXE). Rainwater samples were collected using a wet-only sampler and samples were analyzed for pH and ionic composition, which was determined using ionic chromatography (IC). Natural sources dominated the aerosol mass during the wet season, when it was predominantly of natural biogenic origin mostly in the coarse mode, which comprised up to 81% of PM10. Biogenic aerosol from both primary emissions and secondary organic aerosol dominates the fine mode in the wet season, with very low concentrations (average 2.2 mu g m(-3)). Soil dust was responsible for a minor fraction of the aerosol mass (less than 17%). Sudden increases in the concentration of elements as Al, Ti and Fe were also observed, both in fine and coarse mode (mostly during the April-may months), which we attribute to episodes of Saharan dust transport. During the dry periods, a significant contribution to the fine aerosols loading was observed, due to the large-scale transport of smoke from biomass burning in other portions of the Amazon basin. This contribution is associated with the enhancement of the concentration of S, K, Zn and BCE. Chlorine, which is commonly associated to sea salt and also to biomass burning emissions, presented higher concentration not only during the dry season but also for the April-June months, due to the establishment of more favorable meteorological conditions to the transport of Atlantic air masses to Central Amazonia. The chemical composition of rainwater was similar to those ones observed in other remote sites in tropical forests. The volume-weighted mean (VWM) pH was 4.90. The most important contribution to acidity was from weak organic acids. The organic acidity was predominantly associated with the presence of acetic acid instead of formic acid, which is more often observed in pristine tropical areas. Wet deposition rates for major species did not differ significantly between dry and wet season, except for NH4+, citrate and acetate, which had smaller deposition rates during dry season. While biomass burning emissions were clearly identified in the aerosol component, it did not present a clear signature in rainwater. The biogenic component and the long-range transport of sea salt were observed both in aerosols and rainwater composition. The results shown here indicate that in Central Amazonia it is still possible to observe quite pristine atmospheric conditions, relatively free of anthropogenic influences.