11 resultados para BIODEGRADABLE FILM
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
The influence of glycerol concentration (C-g), process temperature (T-p), drying temperature (T-s), and relative humidity (RH) on the properties of achira flour films was initially assessed. The optimized process conditions were C-g of 17g glycerol/100g flour, T-p of 90 degrees C, T-s of 44.8 degrees C, and RH of 36.4%. The films produced under these conditions displayed high mechanical strength (7.0 MPa), low solubility (38.3%). and satisfactory elongation values (14.6%). This study showed that achira flour is a promising source for the development of biodegradable films with good mechanical properties, low water vapor permeability, and solubility compared to films based on other tubers. (c) 2011 Elsevier Ltd. All rights reserved.
Resumo:
In this work, it was investigated the effect of different moisture contents on PVA-gelatin films by means of dielectric properties, infrared spectroscopy, microwave response and gravimetric method. The films were elaborated from a blend of gelatin and PVA, with 0 and 25 % glycerol. The sorption isotherms were determined by gravimetric methods, at 25 A degrees C. A capacimeter was used for dielectric measurements, and a device called SOLFAN setup was used for microwave measurements. The sorption isotherms were markedly affected by the glycerol content and relative humidity, due to the hygroscopic nature of the films. The dielectric constant and the microwave response signal were also strongly affected by the moisture and glycerol content in the films. Finally, Infrared spectra showed some changes in the amide peak positions, attributed to the modifications in the interactions between the macromolecules. The behaviors obtained in this work were explained on the basis the way the water enters in the film matrix.
Resumo:
In this this study, glycerol content and its incorporation method on tensile and barrier properties of biodegradable films (BF) based on cassava starch were analyzed. ANOVA showed that the glycerol incorporation method did not influence the results (P > 0.05), however the glycerol content influenced significantly the tensile and barrier properties of the films (P < 0.05). Films prepared with lower glycerol content presented better tensile and barrier properties than films with higher content. Films were then prepared with addition of clay nanoparticles and their tensile and barrier properties and glass transition temperature were measured. ANOVA indicated that both glycerol and clay nanoparticles influenced significantly the tensile and barrier properties (P < 0.05), diminishing film permeability when clay nanoparticles were present, while the glass transition temperature was not influenced (P > 0.05). (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
This paper reports on Y2O3:Eu3+ containing 1 mol% of Ag-0 nanoparticle films recovered with a SiO2 layer by using glass foil as a substrate for a possible optical display device application. The obtained film showed an intense emission at 612 nm due to the Eu3+ 5D0 -> F-7(2) hypersensitive transition, a high transmittance in that emission range, an excellent optical quality, and a high absorption only below 300 nm. Moreover, despite the presence of the SiO2 layer used to improve the phosphor adhesion on Corning (R) foil substrates, the intensity ratios between the emissions assigned to Eu3+ D-5(0) -> F-7(2) (dipole electric transition) and D-5(0) -> F-7(1) (dipole magnetic transition) were not affected by it. The x and y coordinate values found in the 1931 Commission Internationale de l'Eclairage Chromaticity Diagram for this film reveal that it has a suitable pure red color emission for optical displays devices. (C) 2012 Elsevier B. V. All rights reserved.
Resumo:
Polythiophene (PTh) phase electropolymerized on the stainless steel wire was evaluated as solid-phase microextraction (SPME), and analysis by liquid chromatography with spectrophotometric detection (LC-UV) for determination of new-generation antidepressants, selective serotonin reuptake inhibitors (SSRIs) (citalopram, paroxetine, fluoxetine and sertraline), in plasma samples. The influence of electropolymerization variables (scan rate, potential range and scan cycles) was evaluated on SPME performance. The SPME variables (extraction time, temperature, matrix pH, ionic strength and desorption procedure), as well as the influence of plasma proteins on sorption mechanisms were also evaluated. The SPME/LC-UV method developed for determination of antidepressants in plasma sample presented a linear range between the limit of quantification (LOQ, 200-250 ng mL(-1)) to 4000 ng mL(-1), and interday precision with coefficient of variation (CV) ranged from 11 to 15%. The proposed method can be a useful tool for the determination of antidepressants in human plasma samples in urgent toxicological analysis after the accidental or suicidal intake of higher doses of medications.
Resumo:
The concept behind a biodegradable ligament device is to temporarily replace the biomechanical functions of the ruptured ligament, while it progressively regenerates its capacities. However, there is a lack of methods to predict the mechanical behaviour evolution of the biodegradable devices during degradation, which is an important aspect of the project. In this work, a hyper elastic constitutive model will be used to predict the mechanical behaviour of a biodegradable rope made of aliphatic polyesters. A numerical approach using ABAQUS is presented, where the material parameters of the model proposal are automatically updated in correspondence to the degradation time, by means of a script in PYTHON. In this method we also use a User Material subroutine (UMAT) to apply a failure criterion base on the strength that decreases according to a first order differential equation. The parameterization of the material model proposal for different degradation times were achieved by fitting the theoretical curves with the experimental data of tensile tests on fibres. To model all the rope behaviour we had considered one step of homogenisation considering the fibres architectures in an elementary volume. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
The need to develop new dental luting agents in order to improve the success of treatments has greatly motivated research. Objective: The aim of this study was to evaluate the diametral tensile strength (DTS) and film thickness (FT) of an experimental dental luting agent derived from castor oil (COP) with or without addition of different quantities of filler (calcium carbonate - CaCO3). Material and Methods: Eighty specimens were manufactured (DTS N=40; FT N=40) and divided into 4 groups: Pure COP; COP 10%; COP 50% and zinc phosphate (control). The cements were mixed according to the manufacturers' recommendations and submitted to the tests. The DTS test was performed in the MTS 810 testing machine (10 KN, 0.5 mm/min). For FT test, the cements were sandwiched between two glass plates (2 cm(2)) and a load of 15 kg was applied vertically on the top of the specimen for 10 min. The data were analyzed by means of one-way ANOVA and Tukey's test (alpha=0.05). Results: The values of DTS (MPa) were: Pure COP- 10.94 +/- 1.30; COP 10%- 30.06 +/- 0.64; COP 50%- 29.87 +/- 0.27; zinc phosphate- 4.88 +/- 0.96. The values of FT (pm) were: Pure COP- 31.09 +/- 3.16; COP 10%- 17.05 +/- 4.83; COP 50%- 13.03 +/- 4.83; Zinc Phosphate- 20.00 +/- 0.12. One-way ANOVA showed statistically significant differences among the groups (DTS - p=1.01E-40; FT - p=2.4E-10). Conclusion: The experimental dental luting agent with 50% of filler showed the best diametral tensile strength and film thickness.
Resumo:
Aims: The long-term clinical performance of drug-eluting stents (DES) coated with biodegradable polymers is poorly known. Methods and results: A total of 274 coronary patients were randomly allocated to paclitaxel-eluting stents, sirolimus-eluting stents, or bare metal stems (2:2:1 ratio). The two DES used the same biodegradable polymers and were identical except for the drug. At three years, the pooled DES population had similar rates of cardiac death or myocardial infarction (9.0% vs. 7.1; p=0.6), but lower risk of repeat interventions (10.0% vs. 29.9%; p<0.01) than controls with bare stents. The cumulative 3-year incidence of definite or probable stent thrombosis in the pooled DES group was 2.3% (first year: 1.8%; second year: 0.4%; third year: zero). There were no significant differences in outcomes between paclitaxel- and sirolimus-eluting stents. Conclusions: The biodegradable-polymer coated DES releasing either paclitaxel or sirolimus were effective in reducing the 3-year rate of re-interventions.
Resumo:
The influence of pH during hydrolysis of titanium(IV) isopropoxide on the morphological and electronic properties of TiO2 nanoparticles prepared by the sol-gel method is investigated and correlated to the photoelectrochemical parameters of dye-sensitized solar cells (DSCs) based on TiO2 films. Nanoparticles prepared under acid pH exhibit smaller particle size and higher surface area, which result in higher dye loadings and better short-circuit current densities than DSCs based on alkaline TiO2-processed films. On the other hand, the product of charge collection and separation quantum yields in films with TiO2 obtained by alkaline hydrolysis is c. a. 27% higher than for the acid TiO2 films. The combination of acid and alkaline TiO2 nanoparticles as mesoporous layer in DSCs results in a synergic effect with overall efficiencies up to 6.3%, which is better than the results found for devices employing one of the nanoparticles separately. These distinct nanoparticles can be also combined by using the layer-by-layer technique (LbL) to prepare compact TiO2 films applied before the mesoporous layer. DSCs employing photoanodes with 30 TiO2 bilayers have shown efficiencies up to 12% higher than the nontreated photoanode ones. These results can be conveniently used to develop optimized synthetic procedures of TiO2 nanoparticles for several dye-sensitized solar cell applications.
Resumo:
Polythiophene (PTh) phase electropolymerized on the stainless steel wire was evaluated as solid-phase microextraction (SPME), and analysis by liquid chromatography with spectrophotometric detection (LC-UV) for determination of new-generation antidepressants, selective serotonin reuptake inhibitors (SSRIs) (citalopram, paroxetine, fluoxetine and sertraline), in plasma samples. The influence of electropolymerization variables (scan rate, potential range and scan cycles) was evaluated on SPME performance. The SPME variables (extraction time, temperature, matrix pH, ionic strength and desorption procedure), as well as the influence of plasma proteins on sorption mechanisms were also evaluated. The SPME/LC-UV method developed for determination of antidepressants in plasma sample presented a linear range between the limit of quantification (LOQ, 200-250 ng mL-1) to 4000 ng mL-1, and interday precision with coefficient of variation (CV) ranged from 11 to 15%. The proposed method can be a useful tool for the determination of antidepressants in human plasma samples in urgent toxicological analysis after the accidental or suicidal intake of higher doses of medications.
Resumo:
Rationale: The primary function of surfactant is to reduce the surface tension at air-liquid interface. In this study, the surface tension behavior of two commercial surfactants, poractant alfa (ChiesiFarmaceuticals,ltaly) and beractant (Abbott Laboratories,USA), were evaluated,using new parameters. Methods: We used a Langmuir film balance (Minitrough,KSV lnstruments,Finland) to measure of surface tension of both poractant alfa and beractant samples. For both samples,we prepared a solution of 1 mg/mdl dissolved in chloroform. The solution (1uL) was applied over a subphase of milli-Q water (175 ml) in the chamber of the balance. The chamber has two moving barriers that can change its surface area between a maximum value of 112.5 cm2 anda minimum value of 22.5 cm2, defining a balance cycle.lhree sample's films were evaluated for each sample, during 20 balance cycles. Here quantify two new variables, which is the mean hysteresis area of the measured curve surface tension of the last 16 balance cycles,defined here as Mean Work Cycle (MWC), and the moment that the surfactant is active in the surface, this measure is defined here as Active Surface Area Critical in the compression (ASACC) and the expansion (ASACE). The test was applied to compare the statistical significance of the results.