10 resultados para Atomic clouds
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Despite the quantum nature of the process, collective scattering by dense cold samples of two-level atoms can be interpreted classically describing the sample as a macroscopic object with a complex refractive index. We demonstrate that resonances in Mie theory can be easily observable in the cooperative scattering by tuning the frequency of the incident laser field or the atomic number. The solution of the scattering problem is obtained for spherical atomic clouds who have the parabolic density characteristic of BECs, and the cooperative radiation pressure force calculated exhibits resonances in the cloud displacement for dense clouds. At odds with uniform clouds which show a complex structure including narrow peaks, these densities show resonances, yet only under the form of quite regular and contrasted oscillations. Copyright (C) EPLA, 2012
Resumo:
Twenty six bottom sediment samples were collected from the Cananeia estuary in summer and winter of 2005. Multielemental analysis was carried out by instrumental neutron activation analysis. Total mercury was determined by cold vapor atomic absorption. As, Cr, Hg and Zn concentrations were compared to the Canadian oriented values (TEL and PEL). Sample points 4 and 9 presented higher concentration for most elements and As and Cr exceeded the TEL values. Organic matter (>10%) associated with siltic and clay sediments was observed. Climatic conditions, hydrodynamic and biogeochemical processes promote differences in seasonal concentrations of elements at some points, which contribute to special distributions.
Resumo:
The study introduces a new regression model developed to estimate the hourly values of diffuse solar radiation at the surface. The model is based on the clearness index and diffuse fraction relationship, and includes the effects of cloud (cloudiness and cloud type), traditional meteorological variables (air temperature, relative humidity and atmospheric pressure observed at the surface) and air pollution (concentration of particulate matter observed at the surface). The new model is capable of predicting hourly values of diffuse solar radiation better than the previously developed ones (R-2 = 0.93 and RMSE = 0.085). A simple version with a large applicability is proposed that takes into consideration cloud effects only (cloudiness and cloud height) and shows a R-2 = 0.92. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Objective: The objective of this study was to analyze the bacterial morphology by atomic force microscopy (AFM) after the application of low-level laser therapy (LLLT) in in vitro culture of Staphylococcus aureus ATCC 29213. Background data: Infections caused by S. aureus are among the highest occurring in hospitals and can often colonize pressure ulcers. LLLT is among the methods used to accelerate the healing of ulcers. However, there is no consensus on its effect on bacteria. Materials and methods: After being cultivated and seeded, the cultures were irradiated using wavelengths of 660, 830, and 904 nm at fluences of 0, 1, 2, 3, 4, 5, and 16 J/cm(2). Viable cells of S. aureus strain were counted after 24 h incubation. To analyze the occurrence of morphological changes, the topographical measurement of bacterial cells was analyzed using the AFM. Results: The overall assessment revealed that the laser irradiation reduced the S. aureus growth using 830 and 904 nm wavelengths; the latter with the greatest inhibition of the colony-forming units (CFU/mL) (331.1 +/- 38.19 and 137.38 +/- 21.72). Specifically with 660 nm, the statistical difference occurred only at a fluence of 3 J/cm(2). Topographical analysis showed small changes in morphological conformity of the samples tested. Conclusions: LLLT reduced the growth of S. aureus with 830 and 904 nm wavelengths, particularly with 904 nm at a fluence of 3 J/cm(2), where the greatest topographical changes of the cell structure occurred.
Resumo:
Double-stranded pBS plasmid DNA was irradiated with gamma rays at doses ranging from 1 to 12 kGy and electron beams from 1 to 10 kGy. Fragment-size distributions were determined by direct visualization, using atomic force microscopy with nanometer-resolution operating in non-tapping mode, combined with an improved methodology. The fragment distributions from irradiation with gamma rays revealed discrete-like patterns at all doses, suggesting that these patterns are modulated by the base pair composition of the plasmid. Irradiation with electron beams, at very high dose rates, generated continuous distributions of highly shattered DNA fragments, similar to results at much lower dose rates found in the literature. Altogether, these results indicate that AFM could supplement traditional methods for high-resolution measurements of radiation damage to DNA, while providing new and relevant information.
Resumo:
Since the mid 1980s the Atomic Force Microscope is one the most powerful tools to perform surface investigation, and since 1995 Non-Contact AFM achieved true atomic resolution. The Frequency-Modulated Atomic Force Microscope (FM-AFM) operates in the dynamic mode, which means that the control system of the FM-AFM must force the micro-cantilever to oscillate with constant amplitude and frequency. However, tip-sample interaction forces cause modulations in the microcantilever motion. A Phase-Locked loop (PLL) is used to demodulate the tip-sample interaction forces from the microcantilever motion. The demodulated signal is used as the feedback signal to the control system, and to generate both topographic and dissipation images. As a consequence, a proper design of the PLL is vital to the FM-AFM performance. In this work, using bifurcation analysis, the lock-in range of the PLL is determined as a function of the frequency shift (Q) of the microcantilever and of the other design parameters, providing a technique to properly design the PLL in the FM-AFM system. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Electronic states of a new molecular species, SiAs, correlating with the three lowest dissociation channels are characterized at a high-level of theory using the CASSCF/MRCI approach along with quintuple-xi quality basis sets. This characterization includes potential energy curves, vibrational energy levels, spectroscopic parameters, dipole and transition dipole moment functions, transition probabilities, and radiative lifetimes. For the ground state (X-2 Pi), an assessment of spin-orbit effects and the interaction with the close-lying A(2)Sigma(+) state is also reported. Similarities and differences with other isovalent species such as SiP and CAs are also discussed.
Resumo:
Cloud point extraction (CPE) was employed for separation and preconcentration prior to the determination of nickel by graphite furnace atomic absorption spectrometry (GFAAS), flame atomic absorption spectrometry (FAAS) or UV-Vis spectrophotometry. Di-2-pyridyl ketone salicyloylhydrazone (DPKSH) was used for the first time as a complexing agent in CPE. The nickel complex was extracted from the aqueous phase using the Triton X-114 surfactant. Under optimized conditions, limits of detection obtained with GFAAS, FAAS and UV-Vis spectrophotometry were 0.14, 0.76 and 1.5 mu g L-1, respectively. The extraction was quantitative and the enrichment factor was estimated to be 27. The method was applied to natural waters, hemodialysis concentrates, urine and honey samples. Accuracy was evaluated by analysis of the NIST 1643e Water standard reference material.
Resumo:
Cirrus clouds are an interesting point in the research of the atmosphere due their behavior and the effect on the earth radiation budget. They can affect the atmospheric radiation budget by reflecting the incoming solar radiation and absorbing the outgoing terrestrial radiation. Also, this cloud type is involved in the dehydration of the upper troposphere and lower stratosphere. So, it is interesting to increment the measurements of this type of clouds from the ground. During November and December 2012, through the CHUVA-SUL campaign, measurements with lidar in Santa Maria, Rio Grande do Sul were conducted. The system installed in Santa Maria site (29.8 °S; 53.7 °W, 100 m asl) was a single elastic-backscatter lidar using the wavelength of 532 nm. Some days with cirrus clouds lidar measurements were detected. Four days with presence of cirrus cloud are showed in the present study. These days, 7, 8, 19 and 28 November 2012, was selected due the persistence of cirrus clouds over many hours. The raw retrieval lidar signals and inverted backscatter coefficient profiles were analyzed for the selected days. Base and top height was obtained by analysis of raw signal and backscatter coefficient. Extinction coefficient profiles were obtained by the assumption of the lidar ratio. Cirrus cloud optical depth (COD) values were calculated, from the integration of the extinction coefficient between the base and top altitudes of the cirrus clouds.
Resumo:
We describe a new method of identifying night-time clouds over the Pierre Auger Observatory using infrared data from the Imager instruments on the GOES-12 and GOES-13 satellites. We compare cloud identifications resulting from our method to those obtained by the Central Laser Facility of the Auger Observatory. Using our new method we can now develop cloud probability maps for the 3000 km2 of the Pierre Auger Observatory twice per hour with a spatial resolution of ∼2.4 km by ∼5.5 km. Our method could also be applied to monitor cloud cover for other ground-based observatories and for space-based observatories.