28 resultados para Approches in silico
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
In silico analyses of Leishmania spp. genome data are a powerful resource to improve the understanding of these pathogens' biology. Trypanosomatids such as Leishmania spp. have their protein-coding genes grouped in long polycistronic units of functionally unrelated genes. The control of gene expression happens by a variety of posttranscriptional mechanisms. The high degree of synteny among Leishmania species is accompanied by highly conserved coding sequences (CDS) and poorly conserved intercoding untranslated sequences. To identify the elements involved in the control of gene expression, we conducted an in silico investigation to find conserved intercoding sequences (CICS) in the genomes of L major, L infantum, and L braziliensis. We used a combination of computational tools, such as Linux-Shell, PERL and R languages, BLAST, MSPcrunch, SSAKE, and Pred-A-Term algorithms to construct a pipeline which was able to: (i) search for conservation in target-regions, (ii) eliminate CICS redundancy and mask repeat elements, (iii) predict the mRNA's extremities, (iv) analyze the distribution of orthologous genes within the generated LeishCICS-clusters, (v) assign GO terms to the LeishCICS-clusters. and (vi) provide statistical support for the gene-enrichment annotation. We associated the LeishCICS-cluster data, generated at the end of the pipeline, with the expression profile oft. donovani genes during promastigote-amastigote differentiation, as previously evaluated by others (GEO accession: GSE21936). A Pearson's correlation coefficient greater than 0.5 was observed for 730 LeishCICS-clusters containing from 2 to 17 genes. The designed computational pipeline is a useful tool and its application identified potential regulatory cis elements and putative regulons in Leishmania. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Introduction: Ovarian adenocarcinoma is frequently detected at the late stage, when therapy efficacy is limited and death occurs in up to 50% of the cases. A potential novel treatment for this disease is a monoclonal antibody that recognizes phosphate transporter sodium-dependent phosphate transporter protein 2b (NaPi2b). Materials and Methods: To better understand the expression of this protein in different histologic types of ovarian carcinomas, we immunostained 50 tumor samples with anti-NaPi2b monoclonal antibody MX35 and, in parallel, we assessed the expression of the gene encoding NaPi2b (SCL34A2) by in silico analysis of microarray data. Results: Both approaches detected higher expression of NaPi2b (SCL34A2) in ovarian carcinoma than in normal tissue. Moreover, a comprehensive analysis indicates that SCL34A2 is the only gene of the several phosphate transporters genes whose expression differentiates normal from carcinoma samples, suggesting it might exert a major role in ovarian carcinomas. Immunohistochemical and mRNA expression data have also shown that 2 histologic subtypes of ovarian carcinoma express particularly high levels of NaPi2b: serous and clear cell adenocarcinomas. Serous adenocarcinomas are the most frequent, contrasting with clear cell carcinomas, rare, and with worse prognosis. Conclusion: This identification of subgroups of patients expressing NaPi2b may be important in selecting cohorts who most likely should be included in future clinical trials, as a recently generated humanized version of MX35 has been developed.
Resumo:
Abstract Background The ability to respond rapidly to fluctuations in environmental changes is decisive for cell survival. Under these conditions trehalose has an essential protective function and its concentration increases in response to enhanced expression of trehalose synthase genes, TPS1, TPS2, TPS3 and TSL1. Intriguingly, the NTH1 gene, which encodes neutral trehalase, is highly expressed at the same time. We have previously shown that trehalase remains in its inactive non-phosphorylated form by the action of an endogenous inhibitor. Recently, a comprehensive two-hybrid analysis revealed a 41-kDa protein encoded by the YLR270w ORF, which interacts with NTH1p. Results In this work we investigate the correlation of this Trehalase Associated Protein, in trehalase activity regulation. The neutral trehalase activity in the ylr270w mutant strain was about 4-fold higher than in the control strain. After in vitro activation by PKA the ylr270w mutant total trehalase activity increased 3-fold when compared to a control strain. The expression of the NTH1 gene promoter fused to the heterologous reporter lacZ gene was evaluated. The mutant strain lacking YLR270w exhibited a 2-fold increase in the NTH1-lacZ basal expression when compared to the wild type strain. Conclusions These results strongly indicate a central role for Ylr270p in inhibiting trehalase activity, as well as in the regulation of its expression preventing a wasteful futile cycle of synthesis-degradation of trehalose.
Resumo:
Blood-brain barrier (BBB) permeation is an essential property for drugs that act in the central nervous system (CNS) for the treatment of human diseases, such as epilepsy, depression, Alzheimer's disease, Parkinson disease, schizophrenia, among others. In the present work, quantitative structure-property relationship (QSPR) studies were conducted for the development and validation of in silico models for the prediction of BBB permeation. The data set used has substantial chemical diversity and a relatively wide distribution of property values. The generated QSPR models showed good statistical parameters and were successfully employed for the prediction of a test set containing 48 compounds. The predictive models presented herein are useful in the identification, selection and design of new drug candidates having improved pharmacokinetic properties.
Resumo:
Abstract Background Intronic and intergenic long noncoding RNAs (lncRNAs) are emerging gene expression regulators. The molecular pathogenesis of renal cell carcinoma (RCC) is still poorly understood, and in particular, limited studies are available for intronic lncRNAs expressed in RCC Methods Microarray experiments were performed with custom-designed arrays enriched with probes for lncRNAs mapping to intronic genomic regions. Samples from 18 primary RCC tumors and 11 nontumor adjacent matched tissues were analyzed. Meta-analyses were performed with microarray expression data from three additional human tissues (normal liver, prostate tumor and kidney nontumor samples), and with large-scale public data for epigenetic regulatory marks and for evolutionarily conserved sequences. Results A signature of 29 intronic lncRNAs differentially expressed between RCC and nontumor samples was obtained (false discovery rate (FDR) <5%). A signature of 26 intronic lncRNAs significantly correlated with the RCC five-year patient survival outcome was identified (FDR <5%, p-value ≤0.01). We identified 4303 intronic antisense lncRNAs expressed in RCC, of which 22% were significantly (p <0.05) cis correlated with the expression of the mRNA in the same locus across RCC and three other human tissues. Gene Ontology (GO) analysis of those loci pointed to 'regulation of biological processes’ as the main enriched category. A module map analysis of the protein-coding genes significantly (p <0.05) trans correlated with the 20% most abundant lncRNAs, identified 51 enriched GO terms (p <0.05). We determined that 60% of the expressed lncRNAs are evolutionarily conserved. At the genomic loci containing the intronic RCC-expressed lncRNAs, a strong association (p <0.001) was found between their transcription start sites and genomic marks such as CpG islands, RNA Pol II binding and histones methylation and acetylation. Conclusion Intronic antisense lncRNAs are widely expressed in RCC tumors. Some of them are significantly altered in RCC in comparison with nontumor samples. The majority of these lncRNAs is evolutionarily conserved and possibly modulated by epigenetic modifications. Our data suggest that these RCC lncRNAs may contribute to the complex network of regulatory RNAs playing a role in renal cell malignant transformation.
Resumo:
The discovery and development of a new drug are time-consuming, difficult and expensive. This complex process has evolved from classical methods into an integration of modern technologies and innovative strategies addressed to the design of new chemical entities to treat a variety of diseases. The development of new drug candidates is often limited by initial compounds lacking reasonable chemical and biological properties for further lead optimization. Huge libraries of compounds are frequently selected for biological screening using a variety of techniques and standard models to assess potency, affinity and selectivity. In this context, it is very important to study the pharmacokinetic profile of the compounds under investigation. Recent advances have been made in the collection of data and the development of models to assess and predict pharmacokinetic properties (ADME - absorption, distribution, metabolism and excretion) of bioactive compounds in the early stages of drug discovery projects. This paper provides a brief perspective on the evolution of in silico ADME tools, addressing challenges, limitations, and opportunities in medicinal chemistry.
Resumo:
Objective: To screen for mutations in AMH and AMHR2 genes in patients with persistent Mullerian duct syndrome (PMDS). Patients and method: Genomic DNA of eight patients with PMDS was obtained from peripheral blood leukocytes. Directed sequencing of the coding regions and the exon-intron boundaries of AMH and AMHR2 were performed. Results: The AMH mutations p.Arg95*, p.Arg123Trp, c.556-2A>G, and p. Arg502Leu were identified in five patients; and p.Gly323Ser and p.Arg407* in AMHR2 of two individuals. In silico analyses of the novel c.556-2A>G, p.Arg502Leu and p.Arg407* mutations predicted that they were harmful and were possible causes of the disease. Conclusion: A likely molecular etiology was found in the eight evaluated patients with PMDS. Four mutations in AMH and two in AMHR2 were identified. Three of them are novel mutations, c.556-2A>G, and p. Arg502Leu in AMH; and p.Gly323Ser in AMHR2. Arq Bras Endocrinol Metab. 2012;56(8):473-8
Resumo:
Pellegrino R, Sunaga DY, Guindalini C, Martins RC, Mazzotti DR, Wei Z, Daye ZJ, Andersen ML, Tufik S. Whole blood genome-wide gene expression profile in males after prolonged wakefulness and sleep recovery. Physiol Genomics 44: 1003-1012, 2012. First published September 4, 2012; doi: 10.1152/physiolgenomics.00058.2012.-Although the specific functions of sleep have not been completely elucidated, the literature has suggested that sleep is essential for proper homeostasis. Sleep loss is associated with changes in behavioral, neurochemical, cellular, and metabolic function as well as impaired immune response. Using high-resolution microarrays we evaluated the gene expression profiles of healthy male volunteers who underwent 60 h of prolonged wakefulness (PW) followed by 12 h of sleep recovery (SR). Peripheral whole blood was collected at 8 am in the morning before the initiation of PW (Baseline), after the second night of PW, and one night after SR. We identified over 500 genes that were differentially expressed. Notably, these genes were related to DNA damage and repair and stress response, as well as diverse immune system responses, such as natural killer pathways including killer cell lectin-like receptors family, as well as granzymes and T-cell receptors, which play important roles in host defense. These results support the idea that sleep loss can lead to alterations in molecular processes that result in perturbation of cellular immunity, induction of inflammatory responses, and homeostatic imbalance. Moreover, expression of multiple genes was downregulated following PW and upregulated after SR compared with PW, suggesting an attempt of the body to re-establish internal homeostasis. In silico validation of alterations in the expression of CETN3, DNAJC, and CEACAM genes confirmed previous findings related to the molecular effects of sleep deprivation. Thus, the present findings confirm that the effects of sleep loss are not restricted to the brain and can occur intensely in peripheral tissues.
Resumo:
From cultures of thermophilic soil fungus Humicola grisea var thermoidea, a delta-lactam derivative (3-(2-(4-hydroxyphenyl)-2-oxoethyl)-5,6-dihydropyridin-2( 1H)-one) that displayed anti-allergic activity was isolated, which was predicted by in silico computational chemistry approaches. The in vitro anti-allergic activity was investigated by beta-hexosaminidase release assay in rat basophilic leukaemia RBL-2H3 cells. The delta-lactam derivative exhibited similar anti-allergic activity (IC50 = 18.7 +/- 6.7 mu M) in comparison with ketotifen fumarate (IC50 = 15.0 +/- 1.3 mu M) and stronger anti-allergic activity than azelastine (IC50 = 32.0 mu M). Also, the MTT cytotoxicity assay with RBL-2H3 cells showed that delta-lactam does not display cytotoxicity at concentrations lower than 50 mu M. This study suggests that the delta-lactam derivative has the potential to be used as a lead compound in the development of anti-allergic drugs for clinical use in humans.
Features of two proteins of Leptospira interrogans with potential role in host-pathogen interactions
Resumo:
Background: Leptospirosis is considered a re-emerging infectious disease caused by pathogenic spirochaetes of the genus Leptospira. Pathogenic leptospires have the ability to survive and disseminate to multiple organs after penetrating the host. Leptospires were shown to express surface proteins that interact with the extracellular matrix (ECM) and to plasminogen (PLG). This study examined the interaction of two putative leptospiral proteins with laminin, collagen Type I, collagen Type IV, cellular fibronectin, plasma fibronectin, PLG, factor H and C4bp. Results: We show that two leptospiral proteins encoded by LIC11834 and LIC12253 genes interact with laminin in a dose - dependent and saturable mode, with dissociation equilibrium constants (K-D) of 367.5 and 415.4 nM, respectively. These proteins were named Lsa33 and Lsa25 (Leptospiral surface adhesin) for LIC11834 and LIC12253, respectively. Metaperiodate - treated laminin reduced Lsa25 - laminin interaction, suggesting that sugar moieties of this ligand participate in this interaction. The Lsa33 is also PLG - binding receptor, with a K-D of 23.53 nM, capable of generating plasmin in the presence of an activator. Although in a weak manner, both proteins interact with C4bp, a regulator of complement classical route. In silico analysis together with proteinase K and immunoflorescence data suggest that these proteins might be surface exposed. Moreover, the recombinant proteins partially inhibited leptospiral adherence to immobilized laminin and PLG. Conclusions: We believe that these multifunctional proteins have the potential to participate in the interaction of leptospires to hosts by mediating adhesion and by helping the bacteria to escape the immune system and to overcome tissue barriers. To our knowledge, Lsa33 is the first leptospiral protein described to date with the capability of binding laminin, PLG and C4bp in vitro.
Resumo:
Despite advances in our understanding of the mechanisms involved in sex determination and differentiation, the specific roles of many genes in these processes are not completely understood in humans. Both DMRT1 and FGF9 are among this group of genes. Dmrt1 controls germ cell differentiation, proliferation, migration and pluripotency and Sertoli cell proliferation and differentiation. Fgf9 has been considered a critical factor in early testicular development and germ cell survival in mice. We screened for the presence of DMRT1 and FGF9 mutations in 33 patients with 46,XY gonadal dysgenesis. No deletions in either DMRT1 or FGF9 were identified using the MLPA technique. Eight allelic variants of DMRT1 were identified, and in silico analysis suggested that the novel c.968-15insTTCTCTCT variant and the c.774G>C (rs146975077) variant could have potentially deleterious effects on the DMRT1 protein. Nine previously described FGF9 allelic variants and six different alleles of the 3' UTR microsatellite were identified. However, none of these DMRT1 or FGF9 variants was associated with increased 46,XY gonadal dysgenesis. In conclusion, our study suggests that neither DMRT1 nor FGF9 abnormalities are frequently involved in dysgenetic male gonad development in patients with non-syndromic 46,XY disorder of sex development. (C) 2012 Published by Elsevier Masson SAS.
Resumo:
Abstract Background Mycelium-to-yeast transition in the human host is essential for pathogenicity by the fungus Paracoccidioides brasiliensis and both cell types are therefore critical to the establishment of paracoccidioidomycosis (PCM), a systemic mycosis endemic to Latin America. The infected population is of about 10 million individuals, 2% of whom will eventually develop the disease. Previously, transcriptome analysis of mycelium and yeast cells resulted in the assembly of 6,022 sequence groups. Gene expression analysis, using both in silico EST subtraction and cDNA microarray, revealed genes that were differential to yeast or mycelium, and we discussed those involved in sugar metabolism. To advance our understanding of molecular mechanisms of dimorphic transition, we performed an extended analysis of gene expression profiles using the methods mentioned above. Results In this work, continuous data mining revealed 66 new differentially expressed sequences that were MIPS(Munich Information Center for Protein Sequences)-categorised according to the cellular process in which they are presumably involved. Two well represented classes were chosen for further analysis: (i) control of cell organisation – cell wall, membrane and cytoskeleton, whose representatives were hex (encoding for a hexagonal peroxisome protein), bgl (encoding for a 1,3-β-glucosidase) in mycelium cells; and ags (an α-1,3-glucan synthase), cda (a chitin deacetylase) and vrp (a verprolin) in yeast cells; (ii) ion metabolism and transport – two genes putatively implicated in ion transport were confirmed to be highly expressed in mycelium cells – isc and ktp, respectively an iron-sulphur cluster-like protein and a cation transporter; and a putative P-type cation pump (pct) in yeast. Also, several enzymes from the cysteine de novo biosynthesis pathway were shown to be up regulated in the yeast form, including ATP sulphurylase, APS kinase and also PAPS reductase. Conclusion Taken together, these data show that several genes involved in cell organisation and ion metabolism/transport are expressed differentially along dimorphic transition. Hyper expression in yeast of the enzymes of sulphur metabolism reinforced that this metabolic pathway could be important for this process. Understanding these changes by functional analysis of such genes may lead to a better understanding of the infective process, thus providing new targets and strategies to control PCM.
Resumo:
Abstract Background Xylella fastidiosa, a Gram-negative fastidious bacterium, grows in the xylem of several plants causing diseases such as citrus variegated chlorosis. As the xylem sap contains low concentrations of amino acids and other compounds, X. fastidiosa needs to cope with nitrogen limitation in its natural habitat. Results In this work, we performed a whole-genome microarray analysis of the X. fastidiosa nitrogen starvation response. A time course experiment (2, 8 and 12 hours) of cultures grown in defined medium under nitrogen starvation revealed many differentially expressed genes, such as those related to transport, nitrogen assimilation, amino acid biosynthesis, transcriptional regulation, and many genes encoding hypothetical proteins. In addition, a decrease in the expression levels of many genes involved in carbon metabolism and energy generation pathways was also observed. Comparison of gene expression profiles between the wild type strain and the rpoN null mutant allowed the identification of genes directly or indirectly induced by nitrogen starvation in a σ54-dependent manner. A more complete picture of the σ54 regulon was achieved by combining the transcriptome data with an in silico search for potential σ54-dependent promoters, using a position weight matrix approach. One of these σ54-predicted binding sites, located upstream of the glnA gene (encoding glutamine synthetase), was validated by primer extension assays, confirming that this gene has a σ54-dependent promoter. Conclusions Together, these results show that nitrogen starvation causes intense changes in the X. fastidiosa transcriptome and some of these differentially expressed genes belong to the σ54 regulon.
Resumo:
Abstract Background Leptospirosis is considered a re-emerging infectious disease caused by pathogenic spirochaetes of the genus Leptospira. Pathogenic leptospires have the ability to survive and disseminate to multiple organs after penetrating the host. Leptospires were shown to express surface proteins that interact with the extracellular matrix (ECM) and to plasminogen (PLG). This study examined the interaction of two putative leptospiral proteins with laminin, collagen Type I, collagen Type IV, cellular fibronectin, plasma fibronectin, PLG, factor H and C4bp. Results We show that two leptospiral proteins encoded by LIC11834 and LIC12253 genes interact with laminin in a dose - dependent and saturable mode, with dissociation equilibrium constants (KD) of 367.5 and 415.4 nM, respectively. These proteins were named Lsa33 and Lsa25 (Leptospiral surface adhesin) for LIC11834 and LIC12253, respectively. Metaperiodate - treated laminin reduced Lsa25 - laminin interaction, suggesting that sugar moieties of this ligand participate in this interaction. The Lsa33 is also PLG - binding receptor, with a KD of 23.53 nM, capable of generating plasmin in the presence of an activator. Although in a weak manner, both proteins interact with C4bp, a regulator of complement classical route. In silico analysis together with proteinase K and immunoflorescence data suggest that these proteins might be surface exposed. Moreover, the recombinant proteins partially inhibited leptospiral adherence to immobilized laminin and PLG. Conclusions We believe that these multifunctional proteins have the potential to participate in the interaction of leptospires to hosts by mediating adhesion and by helping the bacteria to escape the immune system and to overcome tissue barriers. To our knowledge, Lsa33 is the first leptospiral protein described to date with the capability of binding laminin, PLG and C4bp in vitro.
Resumo:
Talisin is a seed-storage protein from Talisia esculenta that presents lectin-like activities, as well as proteinase-inhibitor properties. The present study aims to provide new in vitro and in silico biochemical information about this protein, shedding some light on its mechanistic inhibitory strategies. A theoretical three-dimensional structure of Talisin bound to trypsin was constructed in order to determine the relative interaction mode. Since the structure of non-competitive inhibition has not been elucidated, Talisin-trypsin docking was carried out using Hex v5.1, since the structure of non-competitive inhibition has not been elucidated. The predicted non-coincidence of the trypsin binding site is completely different from that previously proposed for Kunitz-type inhibitors, which demonstrate a substitution of an Arg(64) for the Glu(64) residue. Data, therefore, provide more information regarding the mechanisms of non-competitive plant proteinase inhibitors. Bioassays with Talisin also presented a strong insecticide effect on the larval development of Diatraea saccharalis, demonstrating LD50 and ED50 of ca. 2.0% and 1.5%, respectively. (C) 2011 Elsevier Inc. All rights reserved.