5 resultados para Aparicio, Timoteo.
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Xylella fastidiosa is a Gram-negative bacterium that grows as a biofilm inside the xylem vessels of susceptible plants and causes several economically relevant crop diseases. In the present study, we report the functional and low-resolution structural characterization of the X. fastidiosa disulfide isomerase DsbC (XfDsbC). DsbC is part of the disulfide bond reduction/isomerization pathway in the bacterial periplasm and plays an important role in oxidative protein folding. In the present study, we demonstrate the presence of XfDsbC during different stages of X. fastidiosa biofilm development. XfDsbC was not detected during X. fastidiosa planktonic growth; however, after administering a sublethal copper shock, we observed an overexpression of XfDsbC that also occurred during planktonic growth. These results suggest that X. fastidiosa can use XfDsbC in vivo under oxidative stress conditions similar to those induced by copper. In addition, using dynamic light scattering and small-angle X-ray scattering, we observed that the oligomeric state of XfDsbC in vitro may be dependent on the redox environment. Under reducing conditions, XfDsbC is present as a dimer, whereas a putative tetrameric form was observed under nonreducing conditions. Taken together, our findings demonstrate the overexpression of XfDsbC during biofilm formation and provide the first structural model of a bacterial disulfide isomerase in solution. Structured digital abstract XfDsbC and XfDsbC bind by x ray scattering (View Interaction: 1, 2) XfDsbC and XfDsbC bind by molecular sieving (View interaction) XfDsbC and XfDsbC bind by comigration in non denaturing gel electrophoresis (View interaction) XfDsbC and XfDsbC bind by cross-linking study (View Interaction: 1, 2) XfDsbC and XfDsbC bind by dynamic light scattering (View Interaction: 1, 2)
Resumo:
Invasive species are potential threats to biodiversity, especially if they become established and outnumber native species. In this study, a population of the non-indigenous crab Charybdis hellerii was analyzed in an estuary-bay complex on the southeastern Brazilian coast, with respect to its abundance relative to sympatric native brachyuran species, as well as the size structure, sexual maturity, sex ratio, frequency of mutilation, reproductive period, and development of the reproductive system. Crabs were sampled monthly both in the intertidal zone of rocky shores and on sublittoral soft-bottom. Nine species were recorded on the rocky shores, where C. hellerii was the second most abundant species; only three individuals of C. hellerii were collected in the sublittoral samples. This population of C. hellerii showed a unimodal size structure composed mainly of mature individuals; males were larger than females, and the sex ratio was skewed toward males (3.1:1). About 46.9% of the individuals (75 of 160 crabs) had mutilated or regenerating appendages, more frequent in males (56.8%) than in females (28.2%), which may reflect both inter- and intraspecific agonistic interactions. A continuous reproductive pattern is suggested for this population, although ovigerous females occurred unevenly during the year, with 58.82% of them being collected in winter. There was evidence of multiple spawning, since the ovigerous females with an initial egg mass showed mature ovaries as well as seminal receptacles filled with sperm. C. hellerii is well established in the estuary-bay complex, but is concentrated in intertidal and shallow subtidal rocky shores, where it may compete with and replace other species such as the portunid Cronius ruber. This study also highlights the importance of systematic monitoring studies to evaluate the effects of the introduction of non-indigenous species on ecologically similar natives.
Resumo:
Background: Endoscopic retrograde cholangiopancreatography may fail because of malignant involvement of the second portion of the duodenum and the major papilla. Alternatives include percutaneous transhepatic biliary drainage (PTBD) or surgical bypass. Endoscopic ultrasonography-guided choledochoduodenostomy (EUS-CD) has been reported as an alternative. Objective: To prospectively compare EUS-CD and PTBD in patients with unresectable malignant biliary obstruction. Design: Prospective and randomized study. Setting: Tertiary center. Main Outcome Measurements: Success and efficacy comparison EUS-CD with PTBD. Results: Twenty-five subjects were randomized (13 EUS-CD and 12 PTBD). Mean age was 67 years (SD, 11.9). The 2 groups were similar before intervention in terms of quality of life [EUS-CD (58.3) vs. PTBD (57.8); P = 0.78], total bilirubin (16.4 vs. 17.2; P = 0.7), alkaline phosphatase (539 vs. 518; P = 0.7), and gamma-glutamyl transferase (554.3 vs. 743.5; P = 0.56). All procedures were technically and clinically successful in both groups. At 7-day follow-up there was a significant reduction in total bilirubin in both the groups (EUS-CD, 16.4 to 3.3; P = 0.002 and PTBD, 17.2 to 3.8; P = 0.01), although no difference was noted comparing the 2 groups (EUS-CD to PTBD; 3.3 vs. 3.8; P = 0.2). There was no difference between the complication rates in the 2 groups (P = 0.44), EUS-CD (2/13; 15.3%) and PTBD (3/12; 25%). Costs were similar in the 2 groups also ($5673-EUS-CD vs. $7570-PTBD; P = 0.39). Limitations: Small sample size and single center study. Conclusions: EUS-CD can be an effective and safe alternative to PTBD with similar success, complication rate, cost, and quality of life.
Resumo:
The endophytic fungus Epicoccum nigrum was isolated from sugarcane and the bioguided fractionation of the ethyl acetate extract led to the isolation of epicolactone, mellein, and 4,5-dimethylresorcinol. Characterization of epicolactone by MS, NMR and X-ray crystallography revealed a new natural product with an unusual carbon skeleton. The production of this secondary metabolite decreased in mutants of Epicoccum nigrum transformed by Agrobacterium tumefaciens. Additionally, these mutants produced 4-hydroxymellein.