21 resultados para Analgesics, opioids: Morphine

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Serotonin (5-HT), opioids and the dorsal periaqueductal grey (DPAG) have been implicated in the pathophysiology of panic disorder. In order to study 5-HT-opioid interaction, the opioid antagonist naloxone was injected either systemically (1 mg/kg, i.p.) or intra-DPAG (0.2 mu g/0.5 mu L) to assess its interference with the effect of chronic fluoxetine (10 mg/kg, i.p., daily for 21 days) or of intra-DPAG 5-HT (8 mu g/0.5 mu L). Drug effects were measured in the one-escape task of the rat elevated T-maze, an animal model of panic. Pretreatment with systemic naloxone antagonized the lengthening of escape latency caused by chronic fluoxetine, considered a panicolytic-like effect that parallels the drug's therapeutic response in the clinics. Pretreatment with naloxone injected intra-DPAG antagonized both the panicolytic effect of chronic fluoxetine as well as that of 5-HT injected intra-DPAG. Neither the performance of the inhibitory avoidance task in the elevated T-maze, a model of generalized anxiety nor locomotion measured in a circular arena was affected by the above drug treatments. These results indicate that the panicolytic effect of fluoxetine is mediated by endogenous opioids that are activated by 5-HT in the DPAG. They also allow reconciliation between the serotonergic and opioidergic hypotheses of panic disorder pathophysiology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background The paucity of studies regarding cognitive function in patients with chronic pain, and growing evidence regarding the cognitive effects of pain and opioids on cognitive function prompted us to assess cognition via neuropsychological measurement in patients with chronic non-cancer pain treated with opioids. Methods In this cross-sectional study, 49 patients were assessed by Continuous Reaction Time, Finger Tapping, Digit Span, Trail Making Test-B and Mini-mental State Examination tests. Linear regressions were applied. Results Patients scored poorly in the Trail Making Test-B (mean?=?107.6?s, SD?=?61.0, cut-off?=?91?s); and adequately on all other tests. Several associations among independent variables and cognitive tests were observed. In the multiple regression analyses, the variables associated with statistically significant poor cognitive performance were female sex, higher age, lower annual income, lower schooling, anxiety, depression, tiredness, lower opioid dose, and more than 5?h of sleep the night before assessment (P?<?0.05). Conclusions Patients with chronic pain may have cognitive dysfunction related to some reversible factors, which can be optimized by therapeutic interventions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: In addition to their central effects, opioids cause peripheral analgesia. There is evidence showing that peripheral activation of kappa opioid receptors (KORs) inhibits inflammatory pain. Moreover, peripheral mu-opioid receptor (MOR) activation are able to direct block PGE(2)-induced ongoing hyperalgesia However, this effect was not tested for KOR selective activation. In the present study, the effect of the peripheral activation of KORs on PGE(2)-induced ongoing hyperalgesia was investigated. The mechanisms involved were also evaluated. Results: Local (paw) administration of U50488 (a selective KOR agonist) directly blocked, PGE(2)-induced mechanical hyperalgesia in both rats and mice. This effect was reversed by treating animals with L-NMMA or N-propyl-L-arginine (a selective inhibitor of neuronal nitric oxide synthase, nNOS), suggesting involvement of the nNOS/NO pathway. U50488 peripheral effect was also dependent on stimulation of PI3K gamma/AKT because inhibitors of these kinases also reduced peripheral antinociception induced by U50488. Furthermore, U50488 lost its peripheral analgesic effect in PI3K gamma null mice. Observations made in vivo were confirmed after incubation of dorsal root ganglion cultured neurons with U50488 produced an increase in the activation of AKT as evaluated by western blot analyses of its phosphorylated form. Finally, immunofluorescence of DRG neurons revealed that KOR-expressing neurons also express PI3K gamma (congruent to 43%). Conclusions: The present study indicates that activation of peripheral KORs directly blocks inflammatory hyperalgesia through stimulation of the nNOS/NO signaling pathway which is probably stimulated by PI3K gamma/AKT signaling. This study extends a previously study of our group suggesting that PI3K gamma/AKT/nNOS/NO is an important analgesic pathway in primary nociceptive neurons.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aim: It has been suggested that the medullary raphe (MR) plays a key role in the physiological responses to hypoxia. As opioid mu-receptors have been found in the MR, we studied the putative role of opioid mu-receptors in the rostral MR (rMR) region on ventilation in normal and 7% hypoxic conditions. Methods: We measured pulmonary ventilation ((V) over dotE) and the body temperatures (Tb) of male Wistar rats before and after the selective opioid l-receptor antagonist CTAP ( d-Phe-Cys-Tyr-d-Trp-Arg-Thr-Pen-Thr-NH2, cyclic, 0.1 mu g per 0.1 mu L) was microinjected into the rMR during normoxia or after 60 min of hypoxia. Results: The animals treated with intra-rMR CTAP exhibited an attenuation of the ventilatory response to hypoxia ( 430 +/- 86 mL kg) 1 min) 1) compared with the control group ( 790 +/- 82 mL kg) 1 min) 1) ( P < 0.05). No differences in the Tb were observed between groups during hypoxia. Conclusion: These data suggest that opioids acting on l-receptors in the rMR exert an excitatory modulation of hyperventilation induced by hypoxia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cancado TO, Omais M, Ashmawi HA, Torres MLA - Chronic Pain after Cesarean Section. Influence of Anesthetic/Surgical Technique and Postoperative Analgesia. Background and objectives: Brazil ranks second among countries with the highest rates of cesarean section in the world. Little is known about the future consequences of this procedure on maternal health. This study investigated the influence of anesthetic/surgical technique and postoperative analgesia on the onset of chronic pain after three months of cesarean section. Method: This is a prospective randomized study of 443 patients undergoing cesarean section (elective and emergency), with different doses of hyperbaric bupivacaine 0.5% and opioids in spinal anesthesia. Patients were alocated into five groups as follow: G1 received hyperbaric bupivacaine (8 mg), sufentanil (2.5 mu g), and morphine (100 mu g); G2 received hyperbaric bupivacaine (10 mg), sufentanil (2.5 mu g), and morphine (100 mu g); G3 received hyperbaric bupivacaine (12.5 mg) and morphine (100 mu g); G4 received hyperbaric bupivacaine (15 mg) and morphine (100 mu g); G5 received hyperbaric bupivacaine (12.5 mg) and morphine (100 mu g), without perioperative anti-inflammatory. Pain at rest and in movement were evaluated in the immediate postoperative period. Phone contact was made after three months of surgery for identification of patients with chronic pain. Results: The incidence of chronic pain in the groups was G1 = 20%; G2 = 13%; G3 = 7.1%; G4 = 2.2%, and G5 = 20.3%. Patients who reported higher pain scores in the postoperative period had a higher incidence of chronic pain (p < 0.05). Conclusion: The incidence of chronic pain decreases with higher doses of local anesthetics and use of anti-inflammatory drugs. The higher pain scores in the postoperative period were associated with chronic pain development after three months of cesarean section.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tonic immobility (TI) is an innate defensive behavior that can be elicited by physical restriction and postural inversion and is characterized by a profound and temporary state of akinesis. Our previous studies demonstrated that the stimulation of serotonin receptors in the dorsal raphe nucleus (DRN) appears to be biphasic during TI responses in guinea pigs (Cavia porcellus). Serotonin released by the DRN modulates behavioral responses and its release can occur through the action of different neurotransmitter systems, including the opioidergic and GABAergic systems. This study examines the role of opioidergic, GABAergic and serotonergic signaling in the DRN in TI defensive behavioral responses in guinea pigs. Microinjection of morphine (1.1 nmol) or bicuculline (0.5 nmol) into the DRN increased the duration of TI. The effect of morphine (1.1 nmol) was antagonized by pretreatment with naloxone (0.7 nmol), suggesting that the activation of pi opioid receptors in the DRN facilitates the TI response. By contrast, microinjection of muscimol (0.5 nmol) into the DRN decreased the duration of TI. However, a dose of muscimol (0.26 nmol) that alone did not affect TI, was sufficient to inhibit the effect of morphine (1.1 nmol) on TI, indicating that GABAergic and enkephalinergic neurons interact in the DRN. Microinjection of alpha-methyl-5-HT (1.6 nmol), a 5-HT2 agonist, into the DRN also increased TI. This effect was inhibited by the prior administration of naloxone (0.7 nmol). Microinjection of 8-OH-DPAT (1.3 nmol) also blocked the increase of TI promoted by morphine (1.1 nmol). Our results indicate that the opioidergic, GABAergic and serotonergic systems in the DRN are important for modulation of defensive behavioral responses of TI. Therefore, we suggest that opioid inhibition of GABAergic neurons results in disinhibition of serotonergic neurons and this is the mechanism by which opioids could enhance TI. Conversely, a decrease in TI could occur through the activation of GABAergic interneurons. (C) 2012 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Panic disorder patients are vulnerable to recurrent panic attacks. Two neurochemical hypotheses have been proposed to explain this susceptibility. The first assumes that panic patients have deficient serotonergic inhibition of neurons localized in the dorsal periaqueductal gray matter of the midbrain that organize defensive reactions to cope with proximal threats and of sympathomotor control areas of the rostral ventrolateral medulla that generate most of the neurovegetative symptoms of the panic attack. The second suggests that endogenous opioids buffer normal subjects from the behavioral and physiological manifestations of the panic attack, and their deficit brings about heightened suffocation sensitivity and separation anxiety in panic patients, making them more vulnerable to panic attacks. Experimental results obtained in rats performing one-way escape in the elevated T-maze, an animal model of panic, indicate that the inhibitory action of serotonin on defense is connected with activation of endogenous opioids in the periaqueductal gray. This allows reconciliation of the serotonergic and opioidergic hypotheses of panic pathophysiology, the periaqueductal gray being the fulcrum of serotonin-opioid interaction.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Introduction: Patients undergoing mechanical ventilation (MV) are frequently administered prolonged and/or high doses of opioids which when removed can cause a withdrawal syndrome and difficulty in weaning from MV. We tested the hypothesis that the introduction of enteral methadone during weaning from sedation and analgesia in critically ill adult patients on MV would decrease the weaning time from MV. Methods: A double-blind randomized controlled trial was conducted in the adult intensive care units (ICUs) of four general hospitals in Brazil. The 75 patients, who met the criteria for weaning from MV and had been using fentanyl for more than five consecutive days, were randomized to the methadone (MG) or control group (CG). Within the first 24 hours after study enrollment, both groups received 80% of the original dose of fentanyl, the MG received enteral methadone and the CG received an enteral placebo. After the first 24 hours, the MG received an intravenous (IV) saline solution (placebo), while the CG received IV fentanyl. For both groups, the IV solution was reduced by 20% every 24 hours. The groups were compared by evaluating the MV weaning time and the duration of MV, as well as the ICU stay and the hospital stay. Results: Of the 75 patients randomized, seven were excluded and 68 were analyzed: 37 from the MG and 31 from the CG. There was a higher probability of early extubation in the MG, but the difference was not significant (hazard ratio: 1.52 (95% confidence interval (CI) 0.87 to 2.64; P = 0.11). The probability of successful weaning by the fifth day was significantly higher in the MG (hazard ratio: 2.64 (95% CI: 1.22 to 5.69; P < 0.02). Among the 54 patients who were successfully weaned (29 from the MG and 25 from the CG), the MV weaning time was significantly lower in the MG (hazard ratio: 2.06; 95% CI 1.17 to 3.63; P < 0.004). Conclusions: The introduction of enteral methadone during weaning from sedation and analgesia in mechanically ventilated patients resulted in a decrease in the weaning time from MV.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The zona incerta (ZI) is a subthalamic nucleus connected to several structures, some of them known to be involved with antinociception. The 21 itself may be involved with both antinociception and nociception. The antinociceptive effects of stimulating the ZI with glutamate using the rat tail-flick test and a rat model of incision pain were examined. The effects of intraperitoneal antagonists of acetylcholine, noradrenaline, serotonin, dopamine, or opioids on glutamate-induced antinociception from the ZI in the tail-flick test were also evaluated. The injection of glutamate (7 mu g/0.25 mu l) into the ZI increased tail-flick latency and inhibited post-incision pain, but did not change the animal performance in a Rota-rod test. The injection of glutamate into sites near the ZI was non effective. The glutamate-induced antinociception from the ZI did not occur in animals with bilateral lesion of the dorsolateral funiculus, or in rats treated intraperitoneally with naloxone (1 and 2 m/kg), methysergide (1 and 2 m/kg) or phenoxybenzamine (2 m/kg), but remained unchanged in rats treated with atropine, mecamylamine, or haloperidol (all given at doses of 1 and 2 m/kg). We conclude that the antinociceptive effect evoked from the ZI is not due to a reduced motor performance, is likely to result from the activation of a pain-inhibitory mechanism that descends to the spinal cord via the dorsolateral funiculus, and involves at least opioid, serotonergic and a-adrenergic mechanisms. This profile resembles the reported effects of these antagonists on the antinociception caused by stimulating the periaqueductal gray or the pedunculopontine tegmental nucleus. (C) 2012 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

PURPOSE: To investigate the effect of the opioid blocker naltrexone in the inflammatory response in acute pancreatitis (AP). METHODS: Acute pancreatitis was induced in anesthetized male Wistar rats by retrograde injection of 2.5% sodium taurocholate diluted in 0.5ml saline into the main pancreatic duct. Animals were randomized to the following experimental groups: Control Group (n=9): animals received an intraperitoneal injection of saline solution (0.5ml), 15 minutes before the induction of AP. Naltrexone Group (n=9): animals received an intraperitoneal injection of naltrexone 0.5ml (15 mg/kg), 15 minutes before induction of AP. Peritoneal levels of TNF-alpha and serum levels of IL-6 and amylase were determined The volume of the ascitic fluid was also evaluated. Myeloperoxidase (MPO) activities were analyzed in homogenates of pulmonary tissue. RESULTS: There were no significant differences in the ascitic fluid volume, nor in TNF-alpha and IL-6 levels in the naltrexone group compared to controls. Treatment with naltrexone did not affect the lung MPO activity compared to control group. CONCLUSIONS: The opioid receptors don't play an important role in the pathogenesis of the inflammatory response in acute pancreatitis. If opioids affect leukocytes inflammatory signaling, there are no major implications in the pathogenesis of acute pancreatitis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present work aimed to investigate the effects of acute sucrose treatment on the perception of painful stimuli. Specifically, we sought to determine the involvement of the endogenous opioid peptide-mediated system as well as the role of the mu(1)-opioid receptor in antinociception organisation induced by acute sucrose intake. Nociception was assessed with the tail-flick test in rats (75, 150 and 250 g) of different ages acutely pre-treated with 500 mu L. of a sucrose solution (25, 50, 150 and 250 g/L) or tap water. Young and Adult rats (250 g) showed antinociception after treatment with 50 g/L (during 5 min) and 150 g/L and 250 g/L (during 20 min) sucrose solutions. Surprisingly, this antinociception was more consistent in mature adult rodents than in pups. To evaluate the role of opioid systems, mature adult rodents were pre-treated with different doses (0.25, 1 or 4mg/kg) of the non-selective opioid receptor antagonist naloxone, the selective pi-opioid receptor antagonist naloxonazine or vehicle followed by 250 g/L sucrose solution treatment. Sucrose-induced antinociception was reduced by pre-treatment with both naloxone and naloxonazine. The present findings suggest that sweet substance-induced hypo-analgesia is augmented by increasing sucrose concentrations in young and adult rodents. Acute oral sucrose treatment inhibits pain in laboratory animal by mediating endogenous opioid peptide and mu(1)-opioid receptor actions. (C) 2011 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Local anesthetic efficacy of tramadol has been reported following intradermal application. Our aim was to investigate the effect of perineural tramadol as the sole analgesic in two pain models. Male Wistar rats (280-380 g; N = 5/group) were used in these experiments. A neurostimulation-guided sciatic nerve block was performed and 2% lidocaine or tramadol (1.25 and 5 mg) was perineurally injected in two different animal pain models. In the flinching behavior test, the number of flinches was evaluated and in the plantar incision model, mechanical and heat thresholds were measured. Motor effects of lidocaine and tramadol were quantified and a motor block score elaborated. Tramadol, 1.25 mg, completely blocked the first and reduced the second phase of the flinching behavior test. In the plantar incision model, tramadol (1.25 mg) increased both paw withdrawal latency in response to radiant heat (8.3 +/- 1.1, 12.7 +/- 1.8, 8.4 +/- 0.8, and 11.1 +/- 3.3 s) and mechanical threshold in response to von Frey filaments (459 +/- 82.8, 447.5 +/- 91.7, 320.1 +/- 120, 126.43 +/- 92.8 mN) at 5, 15, 30, and 60 min, respectively. Sham block or contralateral sciatic nerve block did not differ from perineural saline injection throughout the study in either model. The effect of tramadol was not antagonized by intraperitoneal naloxone. High dose tramadol (5 mg) blocked motor function as well as 2% lidocaine. In conclusion, tramadol blocks nociception and motor function in vivo similar to local anesthetics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The objective of the study was to compare epidural and systemic tramadol for postoperative analgesia in bitches undergoing ovariohysterectomy. Twenty animals, randomly divided into two groups, received either epidural (EPI) or intramuscular (IM) tramadol (2 mg/kg) 30 min before anesthetic induction. Analgesia, sedation, cardiorespiratory parameters, end-tidal isoflurane, blood catecholamines and cortisol, and arterial blood gases were measured at different time points up to 24 hr after agent administration. There were no differences between the two groups regarding cardiorespiratory parameters, end-tidal isoflurane, and pain scores. Two dogs in the IM and one in the EPI group required supplemental analgesia. Cortisol was increased (P<0.05) at 120 min (3.59 mu g/dL and 3.27 mu g/dL in the IM and EPI groups, respectively) and 240 min (2.45 mu g/dL and 2.54 mu g/dL in the IM and EPI groups, respectively) compared to baseline. Norepinephrine was also increased (P<0.05) at 120 min in both groups compared to baseline values. Epinephrine values were higher (P<0.05) in the IM group compared with the EPI group at 50 min, 120 min, and 1,440 min after tramadol administration. Epidural tramadol is a safe analgesic, but does not appear to have improved analgesic effects compared with IM administration. (J Am Anim Hosp Assoc 2012; 48:310-319. DOI 10.5326/JAAHA-MS-5795)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Previous studies using morphine-treated dams reported a role for the rostral lateral periaqueductal gray (rIPAG) in the behavioral switching between nursing and insect hunting, likely to depend on an enhanced seeking response to the presence of an appetitive rewarding cue (i.e., the roach). To elucidate the neural mechanisms mediating such responses, in the present study, we first observed how the rIPAG influences predatory hunting in male rats. Our behavioral observations indicated that bilateral rIPAG NMDA lesions dramatically interfere with prey hunting, leaving the animal without chasing or attacking the prey, but do not seem to affect the general levels of arousal, locomotor activity and regular feeding. Next, using Phaseolus vulgaris-leucoagglutinin (PHA-L), we have reviewed the rIPAG connection pattern, and pointed out a particularly dense projection to the hypothalamic orexinergic cell group. Double labeled PHA-L and orexin sections showed an extensive overlap between PHA-L labeled fibers and orexin cells, revealing that both the medial/perifornical and lateral hypothalamic orexinergic cell groups receive a substantial innervation from the rIPAG. We have further observed that both the medial/perifornical and lateral hypothalamic orexinergic cell groups up-regulate Fos expression during prey hunting, and that rIPAG lesions blunted this Fos increase only in the lateral hypothalamic, but not in the medial/perifornical, orexinergic group, a finding supposedly associated with the lack of motivational drive to actively pursue the prey. Overall, the present results suggest that the rIPAG should exert a critical influence on reward seeking by activating the lateral hypothalamic orexinergic cell group. (C) 2011 Elsevier B.V. All rights reserved.