4 resultados para Amplitude articulaire

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study uses the global Ocean Topography Experiment (TOPEX)/Jason-1 altimeters` time series to estimate the 13-yr trend in sea surface height anomaly. These trends are estimated at each grid point by two methods: one fits a straight line to the time series and the other is based on the difference between the average height between the two halves of the time series. In both cases the trend shows large regional variability, mostly where the intense western boundary currents turn. The authors hypothesize that the regional variability of the sea surface height trends leads to changes in the local geostrophic transport. This in turn affects the instability-related processes that generate mesoscale eddies and enhances the Rossby wave signals. This hypothesis is verified by estimates of the trend of the amplitude of the filtered sea surface height anomaly that contains the spectral bands associated with Rossby waves and mesoscale eddies. The authors found predominantly positive tendency in the amplitude of Rossby waves and eddies, which suggests that, on average, these events are becoming more energetic. In some regions, the variation in amplitude over 13 yr is comparable to the standard deviation of the data and is statistically significant according to both methods employed in this study. It is plausible that in this case, the energy is transferred from the mean currents to the waves and eddies through barotropic and baroclinic instability processes that are more pronounced in the western boundary current extension regions. If these heat storage patterns and trends are confirmed on longer time series, then it will be justified to argue that the warming trend of the last century provides the energy that amplifies both Rossby waves and mesoscale eddies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objectives: To establish normative amplitude values for relative difference measurements of the middle latency response (MLR) in normal-hearing pediatrics and to determine if these measurements provided a significant reduction of within-group variability when compared to raw, absolute amplitude measures. A relative amplitude difference is defined in the present paper as the difference in Na-Pa amplitude between two electrodes (e.g. vertical bar Na-Pa at C3 minus Na-Pa at C4 vertical bar, or electrode effects) or between two ears (e.g. vertical bar Na-Pa on left ear stimulation minus Na-Pa on right ear stimulation vertical bar, or ear effects). In contrast, an absolute amplitude is defined as a single Na-Pa measurement made at one electrode for stimulation of one ear (e.g. Na-Pa measured at C3 on left ear stimulation). Design: Cross-sectional study. Study sample: 155 pediatrics with normal peripheral and central hearing, and no history of psychological, neurological, or learning disability issues. Results: Within-group variability was significantly smaller for relative differences when compared to absolute amplitude measures. Electrode effects showed significantly less variability than ear effects. Normative values for ear and electrode effects were reported. Conclusions: Relative differences may provide better utility in the clinical diagnosis of central auditory pathology in pediatrics when compared to absolute amplitude measures because these difference measures show significantly lower variability when examined across subjects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent experimental evidence has suggested a neuromodulatory deficit in Alzheimer's disease (AD). In this paper, we present a new electroencephalogram (EEG) based metric to quantitatively characterize neuromodulatory activity. More specifically, the short-term EEG amplitude modulation rate-of-change (i.e., modulation frequency) is computed for five EEG subband signals. To test the performance of the proposed metric, a classification task was performed on a database of 32 participants partitioned into three groups of approximately equal size: healthy controls, patients diagnosed with mild AD, and those with moderate-to-severe AD. To gauge the benefits of the proposed metric, performance results were compared with those obtained using EEG spectral peak parameters which were recently shown to outperform other conventional EEG measures. Using a simple feature selection algorithm based on area-under-the-curve maximization and a support vector machine classifier, the proposed parameters resulted in accuracy gains, relative to spectral peak parameters, of 21.3% when discriminating between the three groups and by 50% when mild and moderate-to-severe groups were merged into one. The preliminary findings reported herein provide promising insights that automated tools may be developed to assist physicians in very early diagnosis of AD as well as provide researchers with a tool to automatically characterize cross-frequency interactions and their changes with disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: High-frequency trains of electrical stimulation applied over the human muscles can generate forces higher than would be expected by direct activation of motor axons, as evidenced by an unexpected relation between the stimuli and the evoked contractions, originating what has been called “extra forces”. This phenomenon has been thought to reflect nonlinear input/output neural properties such as plateau potential activation in motoneurons. However, more recent evidence has indicated that extra forces generated during electrical stimulation are mediated primarily, if not exclusively, by an intrinsic muscle property, and not from a central mechanism as previously thought. Given the inherent differences between electrical and vibratory stimuli, this study aimed to investigate: (a) whether the generation of vibration-induced muscle forces results in an unexpected relation between the stimuli and the evoked contractions (i.e. extra forces generation) and (b) whether these extra forces are accompanied by signs of a centrally-mediated mechanism or whether intrinsic muscle properties are the redominant mechanisms. Methods: Six subjects had their Achilles tendon stimulated by 100 Hz vibratory stimuli that linearly increased in amplitude (with a peak-to-peak displacement varying from 0 to 5 mm) for 10 seconds and then linearly decreased to zero for the next 10 seconds. As a measure of motoneuron excitability taken at different times during the vibratory stimulation, short-latency compound muscle action potentials (V/F-waves) were recorded in the soleus muscle in response to supramaximal nerve stimulation. Results: Plantar flexion torque and soleus V/F-wave amplitudes were increased in the second half of the stimulation in comparison with the first half. Conclusion: The present findings provide evidence that vibratory stimuli may trigger a centrally-mediated mechanism that contributes to the generation of extra torques. The vibration-induced increased motoneuron excitability (leading to increased torque generation) presumably activates spinal motoneurons following the size principle, which is a desirable feature for stimulation paradigms involved in rehabilitation programs and exercise training.