20 resultados para Amazonian Basin
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
In the Amazon Basin, within a landscape of infertile soils, fertile Anthrosols of pre-Columbian origin occur (Amazonian Dark Earths or terra preta de Indio). These soils are characterized by high amounts of charred organic matter (black carbon, biochar) and high nutrient stocks. Frequently, they were considered as sign for intensive landscape domestication by way of sedentary agriculture and as sign for large settlements in pre-Columbian Amazonia. Beyond the archaeological interest in Amazonian Dark Earths, they increasingly receive attention because it is assumed that they could serve as a model for sustainable agriculture in the humid tropics (terra preta nova). Both questions lack information about the pre-Columbian practices which were responsible for the genesis of Amazonian Dark Earths. It has often been hypothesized that deposition of faeces could have contributed to the high nutrient stocks in these soils, but no study has focussed on this question yet. We analyzed the biomarkers for faeces 5 beta-stanols as well as their precursors and their 5 alpha-isomers in Amazonian Dark Earths and reference soils to investigate the input of faeces into Amazonian Dark Earths. Using Amazonian Dark Earths as example, we discuss the application of threshold values for specific stanols to evaluate faeces deposition in archaeological soils and demonstrate an alternative approach which is based on a comparison of the concentration patterns of 5 beta-stanols with the concentration patterns of their precursors and their 5 alpha-isomers as well as with local backgrounds. The concentration patterns of sterols show that faeces were deposited on Amazonian Dark Earths. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
The podzol-ferralsol soil systems, which cover great areas of Amazonia and other equatorial regions, are frequently associated with kaolin deposits and store and export large amounts of carbon. Although natural organic matter (NOM) plays a key role in their dynamics, little is known about their biogeochemistry. In order to assess the specific role of dissolved organic matter (DOM) on NOM storage in deep horizons and to determine possible relationships between kaolin formation and DOM properties, we studied the groundwater composition of a typical podzol-ferralsol soil catena from the Alto Rio Negro region, Brazil. Groundwater was sampled using tension-free lysimeters placed according to soil morphology. DOC, E-H, p(H), and dissolved Si, Al3+, Fe2+, and Fe3+ were analyzed for all samples and values are given in a database. Quantification of other dissolved ions, small carboxylic acids and SUVA(254) index and acid-base microtitration was achieved on selected samples. Part of the DOM produced by the hydromorphic podzols is directly exported to the blackwater streams; another part percolates at greater depth, and more than 90% of it adsorbs in the Bh-Bhs horizons, allowing carbon storage at depth. Humic substances are preferentially adsorbed with regard to small carboxylic compounds. With regard to kaolin genesis, kaolinite precipitation is favored by Al release from NOM mineralization within the Bh-Bhs and kaolin bleaching is ensured by iron reduction due to acidity and relatively low E-H. Fe2+ mobility can be related to small E-H variations and enhanced by the significant concentration of small carboxylic acids. The long-term result of these processes is the thickening of the kaolin, and it can be inferred that kaolin is likely to occur where active, giant podzols are close to a slope gradient sufficient enough to lower the deep water table.
Resumo:
Across the Americas and the Caribbean, nearly 561,000 slide-confirmed malaria infections were reported officially in 2008. The nine Amazonian countries accounted for 89% of these infections; Brazil and Peru alone contributed 56% and 7% of them, respectively. Local populations of the relatively neglected parasite Plasmodium vivax, which currently accounts for 77% of the regional malaria burden, are extremely diverse genetically and geographically structured. At a time when malaria elimination is placed on the public health agenda of several endemic countries, it remains unclear why malaria proved so difficult to control in areas of relatively low levels of transmission such as the Amazon Basin. We hypothesize that asymptomatic parasite carriage and massive environmental changes that affect vector abundance and behavior are major contributors to malaria transmission in epidemiologically diverse areas across the Amazon Basin. Here we review available data supporting this hypothesis and discuss their implications for current and future malaria intervention policies in the region. Given that locally generated scientific evidence is urgently required to support malaria control interventions in Amazonia, we briefly describe the aims of our current field-oriented malaria research in rural villages and gold-mining enclaves in Peru and a recently opened agricultural settlement in Brazil. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Five species of Ctenus from the Amazon basin are redescribed: C. delesserti (Caporiacco, 1947), C. falconensis Schenkel, 1953, C. nigritus F.O. Pickard-Cambridge, 1897, C. serratipes F.O. Pickard-Cambridge, 1897 and C. sigma (Schenkel, 1953). Three new synonymies are proposed: Ctenus fulvipes Caporiacco, 1947, C. itatiayaeformis Caporiacco, 1955 and C. scenicus Caporiacco, 1947 with C. serratipes. The female of Ctenus nigritus is described for the first time. The distributional ranges of Ctenus nigritus and C. serratipes are extended. We also present distributional maps of the five redescribed species.
Resumo:
We examined the factors controlling the variability in water-column respiration rates in Amazonian rivers. Our objectives were to determine the relationship between respiration rates and the in situ concentrations of the size classes of organic carbon (OC), and the biological source (C-3 and C-4 plants and phytoplankton) of organic matter (OM) supporting respiration. Respiration was measured along with OC size fractions and dissolved oxygen isotopes (delta O-18-O-2) in rivers of the central and southwestern Amazon Basin. Rates ranged from 0.034 mu mol O-2 L-1 h(-1) to 1.78 mu mol O-2 L-1 h(-1), and were four-fold higher in rivers with evidence of photosynthetic production (demonstrated by delta O-18-O-2<24.2 parts per thousand) as compared to rivers lacking such evidence (delta O-18-O-2>24.2 parts per thousand; 1.35 +/- 0.22 vs. 0.30 +/- 0.29 mu mol L-1 h(-1)). Rates were likely elevated in the former rivers, which were all sampled during low water, due to the stimulation of heterotrophic respiration via the supply of a labile, algal-derived substrate and/or the occurrence of autotrophic respiration. The organic composition of fine particulate OM (FPOM) of these rivers is consistent with a phytoplankton origin. Multiple linear regression analysis indicates that [FPOC], C:N-FPOC ratios, and [O-2] account for a high amount of the variability in respiration rates (r(2) = 0.80). Accordingly, FPOC derived from algal sources is associated with elevated respiration rates. The delta C-13 of respiration-derived CO2 indicates that the role of phytoplankton, C-3 plants, and C-4 grasses in supporting respiration is temporally and spatially variable. Future scaling work is needed to evaluate the significance of phytoplankton production to basin-wide carbon cycling.
Resumo:
As a result of recent expeditions to two mountains in the Amazon basin, Tapirapeco and Pico da Neblina, two new genera of Stygnidae, Imeri g. nov. (type species Imeri lomanhungae sp. nov.) and Jime g. nov. (type species Jime chifrudo sp. nov.), and ten new species are described: Auranus hehu sp. nov., Auranus tepui sp. nov., Imeri lomanhungae sp. nov.; Jime chifrudo sp. nov.; Stygnoplus ianomami sp. nov.; Stygnus magalhaesi sp. nov.; Stygnoplus neblina sp. nov.; Stygnoplus tapirapeco sp. nov.; Stygnus nogueirai sp. nov., Stygnus kuryi sp. nov.. Additionally, new distributional records in Amazonas (Brazil) are presented for Stygnidius guerinii Soerensen, 1932, Minax tetraspinosus Pinto-da-Rocha, 1997 and Protimesius longipalpis (Roewer, 1943). Keys for genera of Heterostygninae and Stygninae are provided.
Resumo:
The Yellow-spotted River Turtle (Podocnemis unifilis Troschel, 1848) and the South American River Turtle (Podocnemis expansa (Schweigger, 1812)) are two turtles species that are widely distributed and have ecological, economic, and cultural importance in the Amazon basin. Although sympatric regarding most of their distribution, few studies have addressed the coexistence of these two species. To examine this, we analyzed the trophic level and the primary carbon source from the diets of both species in Baixo Araguaia, Tocantins, Brazil, using stable isotope analyses of carbon (delta C-13) and nitrogen (delta N-15). We also verified possible intraspecific variations (related to sex and body mass) in the trophic levels and primary carbon sources of their diets. Podocnemis unifilis had higher values of delta N-15 than P. expansa, averaging 7.59 parts per thousand and 5.06 parts per thousand, respectively, a difference which may indicate a possible trophic change owing to exploiting different food resources. No differences were found between the two species in relation to delta C-13 (mean values of -26.2 parts per thousand and -26.1 parts per thousand, respectively). The similarity between delta C-13 values suggests that the sources of their basal feeding are the same, consisting mainly of C-3 plants. There was no intraspecific variation in the values of delta C-13 and delta N-15.
Resumo:
Large areas of Amazonian evergreen forest experience seasonal droughts extending for three or more months, yet show maximum rates of photosynthesis and evapotranspiration during dry intervals. This apparent resilience is belied by disproportionate mortality of the large trees in manipulations that reduce wet season rainfall, occurring after 2-3 years of treatment. The goal of this study is to characterize the mechanisms that produce these contrasting ecosystem responses. A mechanistic model is developed based on the ecohydrological framework of TIN (Triangulated Irregular Network)-based Real Time Integrated Basin Simulator + Vegetation Generator for Interactive Evolution (tRIBS+VEGGIE). The model is used to test the roles of deep roots and soil capillary flux to provide water to the forest during the dry season. Also examined is the importance of "root niche separation," in which roots of overstory trees extend to depth, where during the dry season they use water stored from wet season precipitation, while roots of understory trees are concentrated in shallow layers that access dry season precipitation directly. Observational data from the Tapajo's National Forest, Brazil, were used as meteorological forcing and provided comprehensive observational constraints on the model. Results strongly suggest that deep roots with root niche separation adaptations explain both the observed resilience during seasonal drought and the vulnerability of canopy-dominant trees to extended deficits of wet season rainfall. These mechanisms appear to provide an adaptive strategy that enhances productivity of the largest trees in the face of their disproportionate heat loads and water demand in the dry season. A sensitivity analysis exploring how wet season rainfall affects the stability of the rainforest system is presented. Citation: Ivanov, V. Y., L. R. Hutyra, S. C. Wofsy, J. W. Munger, S. R. Saleska, R. C. de Oliveira Jr., and P. B. de Camargo (2012), Root niche separation can explain avoidance of seasonal drought stress and vulnerability of overstory trees to extended drought in a mature Amazonian forest, Water Resour. Res., 48, W12507, doi:10.1029/2012WR011972.
Disproportionate single-species contribution to canopy-soil nutrient flux in an Amazonian rainforest
Resumo:
Rainfall, throughfall and stemflow were monitored on an event basis in an undisturbed open tropical rainforest with a large number of palm trees located in the southwestern Amazon basin of Brazil. Stemflow samples were collected from 24 trees with a diameter at breast height (DBH) > 5 cm, as well as eight young and four full-grown babassu palms (Attalea speciosa Mart.) for 5 weeks during the peak of the wet season. We calculated rainfall, throughfall and stemflow concentrations and fluxes of Na+, K+, Ca2+, Mg2+,, Cl-, SO42-, NO3- and H+ and stemflow volume-weighted mean concentrations and fluxes for three size classes of broadleaf trees and three size classes of palms. The concentrations of most solutes were higher in stemflow than in rainfall and increased with increasing tree and palm size. Concentration enrichments from rainfall to stemflow and throughfall were particularly high (81-fold) for NO3-. Stemflow fluxes of NO3- and H+ exceeded throughfall fluxes but stemflow fluxes of other solutes were less than throughfall fluxes. Stemflow solute fluxes to the forest soil were dominated by fluxes on babassu palms, which represented only 4% of total stem number and 10% of total basal area. For NO3-, stemflow contributed 51% of the total mass of nitrogen delivered to the forest floor (stemflow + throughfall) and represented more than a 2000-fold increase in NO3- flux compared what would have been delivered by rainfall alone on the equivalent area. Because these highly localized fluxes of both water and NO3- persist in time and space, they have the potential to affect patterns of soil moisture, microbial populations and other features of soil biogeochemistry conducive to the creation of hotspots for nitrogen leaching and denitrification, which could amount to an important fraction of total ecosystem fluxes. Because these hotspots occur over very small areas, they have likely gone undetected in previous studies and need to be considered as an important feature of the biogeochemistry of palm-rich tropical forest. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Dietary data from a large sample of woodcreepers (16 spp., n?=?139), revealed that six species of dendrocolaptids occasionally feed upon lizards and frogs. These birds, which are mainly insectivorous, encounter and feed on lizards while perching on tree trunks, probably in association with army-ant swarm feeding behaviour. Frog intake may be related to declines in the abundance of invertebrate prey. The bones recovered were identified as one small species of gecko, Gonatodes humeralis, and at least one anuran. We estimate that in the entire sample, about eight lizards and two frogs were ingested. The partially digested gecko material allows determination of which bones are more resistant to digestion, although it is possible that these elements were differentially retained in the stomach. These elements correspond to the more frequently preserved bones in the fossil record of geckos, indicating that the same portions of the skeleton persist under the processes of both digestion and fossilization.
Resumo:
Anchoviella juruasanga is described from the drainages of rios Negro, Madeira, Tapajós, Trombetas, Tocantins, and Jari, in the Amazon basin, Brazil. The new species is distinguished from its congeners by having a short upper jaw, with its posterior tip extending between the verticals through anterior and posterior margins of the pupil (vs. posterior tip of upper jaw extending beyond the vertical through posterior margin of the pupil). Anchoviella juruasanga is also distinct from other strictly freshwater Amazonian species of the genus by the distance from tip of snout to posterior end of upper jaw between 8 and 11% in standard length (vs. 14% or more in A. alleni, A. carrikeri, A. guianensis, and A. jamesi). The anal-fin origin slightly posterior to or at the vertical through the base of the last dorsal-fin ray further distinguishes the new species from A. alleni (anal-fin origin posterior to the vertical through the last anal-fin ray by at least 14% of head length) and A. jamesi (anal-fin origin anterior to the vertical through the last anal-fin ray). An identification key for the Amazonian species of Anchoviella, including marine and estuarine species known to occur in the lower portion of the basin, is presented.
Resumo:
The soft tick Ornithodoros guaporensis n. sp. (Acari: Ixodida: Argasidae) is described from larvae and adults. Morphological analysis and 16S rDNA sequences are provided. Adults were collected from a rocky fissure inhabited by bats located in the Amazonian forest in north-eastern Bolivia (Beni Department) close to the Guaporé River. Larvae were obtained from eggs laid by females collected in the field, and which were fed on rabbits in the laboratory. Larvae of O. guaporensis are morphologically closely related to Ornithodoros rioplatensis, Ornithodoros puertoricensis and Orni-thodoros talaje. Larvae of O. guaporensis and O. rioplatensis can be separated from O. puertoricensis and O. talaje by the number of pairs of dorsal setae (20 in O. guaporensis and O. rioplatensis, 18 in O. puertoricensis and 17 in O. talaje). Larvae of O. guaporensis and O. rioplatensis can be differentiated by the medial dental formula (2/2 in O. guaporensis and 3/3 in O. rioplatensis) and the apex of the hypostome, which is more pointed in O. rioplatensis than in O. guaporensis. The Principal Component Analysis performed with morphometric characters of larvae showed a clear separation among O. guaporensis, O. rioplatensis, O. puertoricensis and O. talaje. Significant morphological differences among adults of these four species were not found. The analysis of the 16S rDNA sequences allowed for the differentiation between O. guaporensis and the remaining Neotropical species of the family Argasidae.
Resumo:
We investigated the seasonal patterns of Amazonian forest photosynthetic activity, and the effects thereon of variations in climate and land-use, by integrating data from a network of ground-based eddy flux towers in Brazil established as part of the ‘Large-Scale Biosphere Atmosphere Experiment in Amazonia’ project. We found that degree of water limitation, as indicated by the seasonality of the ratio of sensible to latent heat flux (Bowen ratio) predicts seasonal patterns of photosynthesis. In equatorial Amazonian forests (5◦ N–5◦ S), water limitation is absent, and photosynthetic fluxes (or gross ecosystem productivity, GEP) exhibit high or increasing levels of photosynthetic activity as the dry season progresses, likely a consequence of allocation to growth of new leaves. In contrast, forests along the southern flank of the Amazon, pastures converted from forest, and mixed forest-grass savanna, exhibit dry-season declines in GEP, consistent with increasing degrees of water limitation. Although previous work showed tropical ecosystem evapotranspiration (ET) is driven by incoming radiation, GEP observations reported here surprisingly show no or negative relationships with photosynthetically active radiation (PAR). Instead, GEP fluxes largely followed the phenology of canopy photosynthetic capacity (Pc), with only deviations from this primary pattern driven by variations in PAR. Estimates of leaf flush at three
Resumo:
The Columbia Channel (CCS) system is a depositional system located in the South Brazilian Basin, south of the Vitoria-Trindade volcanic chain. It lies in a WNW-ESE direction on the continental rise and abyssal plain, at a depth of between 4200 and 5200 m. It is formed by two depocenters elongated respectively south and north of the channel that show different sediment patterns. The area is swept by a deep western boundary current formed by AABW. The system has been previously interpreted has a mixed turbidite-contourite system. More detailed study of seismic data permits a more precise definition of the modern channel morphology, the system stratigraphy as well as the sedimentary processes and control. The modern CCS presents active erosion and/or transport along the channel. The ancient Oligo-Neogene system overlies a ""upper Cretaceous-Paleogene"" sedimentary substratum (Unit U1) bounded at the top by a major erosive ""late Eocene-early Oligocene"" discordance (D2). This ancient system is subdivided into 2 seismic units (U2 and U3). The thick basal U2 unit constitutes the larger part of the system. It consists of three subunits bounded by unconformities: D3 (""Oligocene-Miocene boundary""), D4 (""late Miocene"") and D5 (""late Pliocene""). The subunits have a fairly tabular geometry in the shallow NW depocenter associated with predominant turbidite deposits. They present a mounded shape in the deep NE depocenter, and are interpreted as forming a contourite drift. South of the channel, the deposits are interpreted as a contourite sheet drift. The surficial U3 unit forms a thin carpet of deposits. The beginning of the channel occurs at the end of U1 and during the formation of D2. Its location seems to have been determined by active faults. The channel has been active throughout the late Oligocene and Neogene and its depth increased continuously as a consequence of erosion of the channel floor and deposit aggradation along its margins. Such a mixed turbidite-contourite system (or fan drift) is characterized by frequent, rapid lateral facies variations and by unconformities that cross the whole system and are associated with increased AABW circulation. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
On the basis of thin-section studies of cuttings and a core from two wells in the Amapa Formation of the Foz do Amazonas Basin, five main microfacies have been recognized within three stratigraphic sequences deposited during the Late Paleocene to Early Eocene. The facies are: 1) Ranikothalia grainstone to packstone facies; 2) ooidal grainstone to packstone facies; 3) larger foraminiferal and red algal grainstone to packstone facies; 4) Amphistegina and Helicostegina packstone facies; and 5) green algal and small benthic foraminiferal grainstone to packstone facies, divisible locally into a green algal and the miliolid foraminiferal subfacies and a green algal and small rotaliine foraminiferal subfacies. The lowermost sequence (Si) was deposited in the Late Paleocene-Early Eocene (biozone LF1, equivalent to P3-P6?) and includes rudaceous grainstones and packstones with large specimens of Ranikothalia bermudezi representative of the mid- and inner ramp. The intermediate and uppermost sequences (S2 and S3) display well-developed lowstand deposits formed at the end of the Late Paleocene (upper biozone LF1) and beginning of the Early Eocene (biozone LF2) on the inner ramp (larger foraminiferal and red algal grainstone to packstone facies), in lagoons (green algal and small benthic foraminiferal facies) and as shoals (ooidal facies) or banks (Amphistegina and Helicostegina facies). Depth and oceanic influence were the main controls on the distribution of these microfacies. Stratal stacking patterns evident within these sequences may well have been related to sea level changes postulated for the Late Paleocene and Early Eocene. During this time, the Amapa Formation was dominated by cyclic sedimentation on a gently sloping ramp. Environmental and ecological stress brought about by sea level change at the end of the biozone LF1 led to the extinction of the larger foraminifera (Ranikothalia bermudezi). (c) 2009 Elsevier B.V. All rights reserved.