8 resultados para Acartia clausi, egg production per female as carbon
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Introducing nitrogen-fixing tree species in fast-growing eucalypt plantations has the potential to improve soil nitrogen availability compared with eucalypt monocultures. Whether or not the changes in soil nutrient status and stand structure will lead to mixtures that out-yield monocultures depends on the balance between positive interactions and the negative effects of interspecific competition, and on their effect on carbon (C) uptake and partitioning. We used a C budget approach to quantify growth, C uptake and C partitioning in monocultures of Eucalyptus grandis (W. Hill ex Maiden) and Acacia mangium (Willd.) (treatments E100 and A100, respectively), and in a mixture at the same stocking density with the two species at a proportion of 1 : 1 (treatment MS). Allometric relationships established over the whole rotation, and measurements of soil CO2 efflux and aboveground litterfall for ages 4-6 years after planting were used to estimate aboveground net primary production (ANPP), total belowground carbon flux (TBCF) and gross primary production (GPP). We tested the hypotheses that (i) species differences for wood production between E. grandis and A. mangium monocultures were partly explained by different C partitioning strategies, and (ii) the observed lower wood production in the mixture compared with eucalypt monoculture was mostly explained by a lower partitioning aboveground. At the end of the rotation, total aboveground biomass was lowest in A100 (10.5 kg DM m(-2)), intermediate in MS (12.2 kg DM m(-2)) and highest in E100 (13.9 kg DM m(-2)). The results did not support our first hypothesis of contrasting C partitioning strategies between E. grandis and A. mangium monocultures: the 21% lower growth (delta B-w) in A100 compared with E100 was almost entirely explained by a 23% lower GPP, with little or no species difference in ratios such as TBCF/GPP, ANPP/TBCF, delta B-w/ANPP and delta B-w/GPP. In contrast, the 28% lower delta B-w in MS than in E100 was explained both by a 15% lower GPP and by a 15% lower fraction of GPP allocated to wood growth, thus partially supporting our second hypothesis: mixing the two species led to shifts in C allocations from above- to belowground, and from growth to litter production, for both species.
Resumo:
The somatic and gonad productions of the cirolanid isopod Excirolana armata were analyzed by taking monthly samples from December 2003 to November 2005 on Una beach, So Paulo state (24A degrees S), southeastern Brazil. Sampling was performed along three fixed transects established from the base of the foredunes to the waterline. Weight-specific growth rate was used to estimate the E. armata somatic production for 2004 and 2005, separately. The gonad production was estimated based on the monthly reproductive potential (mean number of eggs/embryos per female x monthly abundance of ovigerous females with near-release broods) for 2004. The annual somatic production of E. armata population varied from 15.57 to 17.25 g AFDW m(-1) year(-1) and the somatic production/biomass ratio (P (s)/B) from 3.55 to 3.14 year(-1) for 2004 and 2005, respectively. The P (s)/B ratios were higher for males (4.02 and 3.19 year(-1) for 2004 and 2005) than for females (3.10 year(-1) for both years). The annual gonad production (P (g) = 1.07 g AFDW m(-1) year(-1)) contributed about 15 and 6% to the total production (P (s) + P (g)) of females and the population, respectively. The proportion of gonad to somatic production of females (P (g)/P (s)) increased with individual size (ca 90% in the 7.5 mm size class), and the annual weight-specific gonad production (P (g)/B ratio) was estimated to 0.24 year(-1). The high P (s)/B ratios estimated for E. armata derive from the fast growth of individuals and show the importance of this population to the energy flow on Una beach ecosystem. However, the low percentage of juveniles verified in this population and in other studies of populations of the genus Excirolana is discussed as an important source of underestimation of P (s)/B ratio.
Resumo:
The West Antarctic Peninsula (WAP) shelf experiences intense seasonal and interannual variability in phytoplankton production and particulate-organic-carbon flux to the seafloor. To explore the response of the megabenthic community to this production variability, we conducted video surveys of epibenthic megafauna at three stations on the WAP shelf in Nov-Dec 1999, Mar 2000, Jun 2000, Oct-Nov 2000, and Feb-Mar 2001. The epibenthic megafauna was dominated (>90%) by elasipod holothurians, irregular urchins and anthozoans, with total abundances ranging from 19 to 152 ind. 1 00 m(-2). The abundance of three of the dominant taxa (Protelpidia murrayi, Peniagone vignomi, and Amphipneustes spp.) varied significantly across seasons (p <0.05), although variations were not tightly correlated with the summer bloom cycle. The irregular urchins in the genus Amphipneustes varied 5-fold in abundance at single stations, with maximum densities (an average of 10.1 ind. 100 m(-2)) attained in Jun 2000. Abundances of the elasipod holothurians P. murrayi (1-121 ind. 100 m(-2)) and P. vignoni (0.7-27.5 ind. 100 m(-2)) fell within the range for elasipod holothurians from other bathyal regions measured using image analysis. The abundance of P. murrayi increased up to 6-fold from a single Jun-Oct recruitment pulse, while changes in the abundance of P. vignoni (over 2-fold higher in Feb-Mar 2001) apparently resulted from immigration during the presence of a 1-2 cm thick carpet of fresh phytocletritus. Based on the ratio of the number of fecal casts per individual, elasipod holothurians increased surface-deposit feeding rates by >= 2-fold while phytocletritus was present at the seafloor. Nonetheless, these surface-deposit feeders appeared to feed and egest sediments throughout the winter, which is consistent with year-round persistence of a labile food bank in surficial sediments on the deep WAP shelf.
Resumo:
Schistosomiasis is a neglected tropical disease that remains a considerable public health problem worldwide. Since the mainstay of schistosomiasis control is chemotherapy with a single drug, praziquantel, drug resistance is a concern. Here, we examined the in vitro effects of dermaseptin 01 (DS 01), an antimicrobial peptide found in the skin secretion of frogs of the genus Phyllomedusa, on Schistosoma mansoni adult worms. DS 01 at a concentration of 100 mg/ml reduced the worm motor activity and caused the death of all worms within 48 h in RPMI 1640 medium. At the highest sublethal concentration of antimicrobial peptide (75 mg/ml), a 100% reduction in egg output of paired female worms was observed. Additionally, DS 01 induced morphological alterations on the tegument of S. mansoni, and a quantitative analysis carried out by confocal microscopy revealed extensive destruction of the tubercles in a dose-dependent manner over the concentration range of 50-200 mu g/ml. It was the first time that an anthelmintic activity towards schistosomes has been reported for a dermaseptin.
Resumo:
Five cucurbitane-type triterpenes (1-5), previously isolated from the African medicinal plant Momordica balsamina, along with five ester derivatives (6-10) of karavilagenin C (2), were evaluated for their potential schistosomicidal activity against Schistosoma mansoni adult worms. The natural compounds were isolated from the ethyl acetate-soluble fraction of the methanol extract of the aerial parts of M. balsamina. In a preliminary study, a significant schistosomicidal activity was observed for both the crude methanol extract and the ethyl acetate fraction. The compounds responsible for the activity were found to be balsaminol F (1) and karavilagenin C (2) with LC50 values of 14.7 +/- 1.5 and 28.9 +/- 1.8 mu M, respectively, after 24 h of incubation (positive control praziquantel, LC50 = 1.2 +/- 0.1 mu M). Both compounds (1, 2), at 10-50 mu M, induced significant reductions in the motor activity of the worms and significantly decreased the egg production. Furthermore, they were able (at 10-100 mu M) to separate the adult worm pairs into male and female after 24 h. Compounds 3-5, bearing a sugar moiety as a substituent, and the acylated derivatives of karavilagenin C (6-10) were inactive, suggesting that the presence of free hydroxyl groups in the tetracyclic skeleton might be important for the activity. A correlation between activity and the molecular volume/weight of compounds was also found.
Resumo:
With the objective to establish the best metabolizable energy (ME) intake for layers, and the best dietary vegetable oil addition level to optimize egg production, an experiment was carried out with 432 30-week-old Hisex Brown layers. Birds were distributed into nine treatments with six replicates of eight birds each according to a 3 x 3 factorial arrangement, consisting of three daily metabolizable energy intake (280, 300 or 320 kcal/bird/day) and three oil levels (0.00; 0.75 and 1.50 g/bird/day). Daily feed intake was limited to 115, 110 and 105 g/bird in order to obtain the desired energy and oil intake in each treatment. The following parameters were evaluated: initial weight, final weight, body weight change, egg production, egg mass, feed conversion ratio per dozen eggs and per egg mass and energy conversion. There was no influence of the treatments on egg production (%) or egg mass (g/bird/day). Final weight and body weight change were significantly affected by increasing energy intake. Feed conversion ratio per egg mass, feed conversion ratio per dozen eggs and energy conversion significantly worsened as a function of the increase in daily energy intake. An energy intake of 280 kcal/bird/day with no addition of dietary oil does not affect layer performance.
Resumo:
We examined the factors controlling the variability in water-column respiration rates in Amazonian rivers. Our objectives were to determine the relationship between respiration rates and the in situ concentrations of the size classes of organic carbon (OC), and the biological source (C-3 and C-4 plants and phytoplankton) of organic matter (OM) supporting respiration. Respiration was measured along with OC size fractions and dissolved oxygen isotopes (delta O-18-O-2) in rivers of the central and southwestern Amazon Basin. Rates ranged from 0.034 mu mol O-2 L-1 h(-1) to 1.78 mu mol O-2 L-1 h(-1), and were four-fold higher in rivers with evidence of photosynthetic production (demonstrated by delta O-18-O-2<24.2 parts per thousand) as compared to rivers lacking such evidence (delta O-18-O-2>24.2 parts per thousand; 1.35 +/- 0.22 vs. 0.30 +/- 0.29 mu mol L-1 h(-1)). Rates were likely elevated in the former rivers, which were all sampled during low water, due to the stimulation of heterotrophic respiration via the supply of a labile, algal-derived substrate and/or the occurrence of autotrophic respiration. The organic composition of fine particulate OM (FPOM) of these rivers is consistent with a phytoplankton origin. Multiple linear regression analysis indicates that [FPOC], C:N-FPOC ratios, and [O-2] account for a high amount of the variability in respiration rates (r(2) = 0.80). Accordingly, FPOC derived from algal sources is associated with elevated respiration rates. The delta C-13 of respiration-derived CO2 indicates that the role of phytoplankton, C-3 plants, and C-4 grasses in supporting respiration is temporally and spatially variable. Future scaling work is needed to evaluate the significance of phytoplankton production to basin-wide carbon cycling.
Resumo:
Understanding the underlying mechanisms that account for the impact of potassium (K) fertilization and its replacement by sodium (Na) on tree growth is key to improving the management of forest plantations that are expanding over weathered tropical soils with low amounts of exchangeable bases. A complete randomized block design was planted with Eucalyptus grandis (W. Hill ex Maiden) to quantify growth, carbon uptake and carbon partitioning using a carbon budget approach. A combination of approaches including the establishment of allometric relationships over the whole rotation and measurements of soil CO2 efflux and aboveground litterfall at the end of the rotation were used to estimate aboveground net production (ANPP), total belowground carbon flux and gross primary production (GPP). The stable carbon isotope (delta C-13) of stem wood alpha-cellulose produced every year was used as a proxy for stomatal limitation of photosynthesis. Potassium fertilization increased GPP and decreased the fraction of carbon allocated belowground. Aboveground net production was strongly enhanced, and because leaf lifespan increased, leaf biomass was enhanced without any change in leaf production, and wood production (P-W) was dramatically increased. Sodium application decreased the fraction of carbon allocated belowground in a similar way, and enhanced GPP, ANPP and P-W, but to a lesser extent compared with K fertilization. Neither K nor Na affected delta C-13 of stem wood alpha-cellulose, suggesting that water-use efficiency was the same among the treatments and that the inferred increase in leaf photosynthesis was not only related to a higher stomatal conductance. We concluded that the response to K fertilization and Na addition on P-W resulted from drastic changes in carbon allocation.