15 resultados para ACUTE MESENTERIC ISCHEMIA

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

40.00% 40.00%

Publicador:

Resumo:

PURPOSE: To investigate the effect of cilostazol, in kidney and skeletal muscle of rats submitted to acute ischemia and reperfusion. METHODS: Fourty three animals were randomized and divided into two groups. Group I received a solution of cilostazol (10 mg/Kg) and group II received saline solution 0.9% (SS) by orogastric tube after ligature of the abdominal aorta. After four hours of ischemia the animals were divided into four subgroups: group IA (Cilostazol): two hours of reperfusion. Group IIA (SS): two hours of reperfusion. Group IB (Cilostazol): six hours of reperfusion. Group IIB (SS) six hours of reperfusion. After reperfusion, a left nephrectomy was performed and removal of the muscles of the hind limb. The histological parameters were studied. In kidney cylinders of myoglobin, vacuolar degeneration and acute tubular necrosis. In muscle interstitial edema, inflammatory infiltrate, hypereosinophilia fiber, cariopicnose and necrosis. Apoptosis was assessed by immunohistochemistry for cleaved caspase-3 and TUNEL. RESULTS: There was no statistically significant difference between groups. CONCLUSION: Cilostazol had no protective effect on the kidney and the skeletal striated muscle in rats submitted to acute ischemia and reperfusion in this model.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Abstract Background Intestinal ischemia/reperfusion (IR) injury is a serious and triggering event in the development of remote organ dysfunction, from which the lung is the main target. This condition is characterized by intense neutrophil recruitment, increased microvascular permeability. Intestinal IR is also responsible for induction of adult respiratory distress syndrome, the most serious and life-threatening form of acute lung injury. The purpose of this study was to investigate the effect of annexin-A1 protein as an endogenous regulator of the organ remote injury induced by intestinal ischemia/reperfusion. Male C57bl/6 mice were subjected to intestinal ischemia, induced by 45 min occlusion of the superior mesenteric artery, followed by reperfusion. Results The intestinal ischemia/reperfusion evoked a high intensity lung inflammation as indicated by the number of neutrophils as compared to control group. Treatment with annexin-A1 peptidomimetic Ac2-26, reduced the number of neutrophils in the lung tissue and increased its number in the blood vessels, which suggests a regulatory effect of the peptide Ac2-26 in the neutrophil migration. Moreover, the peptide Ac2-26 treatment was associated with higher levels of plasma IL-10. Conclusion Our data suggest that the annexin-A1 peptidomimetic Ac2-26 treatment has a regulatory and protective effect in the intestinal ischemia/reperfusion by attenuation of the leukocyte migration to the lung and induction of the anti-inflammatory cytokine IL-10 release into the plasma. The anti-inflammatory action of annexin-A1 and its peptidomimetic described here may serve as a basis for future therapeutic approach in mitigating inflammatory processes due to intestinal ischemia/reperfusion.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Intestinal ischemia and reperfusion (i-I/R) is an insult associated with acute respiratory distress syndrome (ARDS). It is not known if pro- and anti-inflammatory mediators in ARDS induced by i-I/R can be controlled by low-level laser therapy (LLLT). This study was designed to evaluate the effect of LLLT on tracheal cholinergic reactivity dysfunction and the release of inflammatory mediators from the lung after i-I/R. Anesthetized rats were subjected to superior mesenteric artery occlusion (45 min) and killed after clamp release and preestablished periods of intestinal reperfusion (30 min, 2 or 4 h). The LLLT (660 nm, 7.5 J/cm(2)) was carried out by irradiating the rats on the skin over the right upper bronchus for 15 and 30 min after initiating reperfusion and then euthanizing them 30 min, 2, or 4 h later. Lung edema was measured by the Evans blue extravasation technique, and pulmonary neutrophils were determined by myeloperoxidase (MPO) activity. Pulmonary tumor necrosis factor-α (TNF-α), interleukin-10 (IL-10), intercellular adhesion molecule-1 (ICAM-1), and isoform of NO synthase (iNOS) mRNA expression were analyzed by real-time PCR. TNF-α, IL-10, and iNOS proteins in the lung were measured by the enzyme-linked immunoassay technique. LLLT (660 nm, 7.5 J/cm(2)) restored the tracheal hyperresponsiveness and hyporesponsiveness in all the periods after intestinal reperfusion. Although LLLT reduced edema and MPO activity, it did not do so in all the postreperfusion periods. It was also observed with the ICAM-1 expression. In addition to reducing both TNF-α and iNOS, LLLT increased IL-10 in the lungs of animals subjected to i-I/R. The results indicate that LLLT can control the lung's inflammatory response and the airway reactivity dysfunction by simultaneously reducing both TNF-α and iNOS.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

BACKGROUND: Intestinal ischemia/reperfusion (IR) injury is a serious and triggering event in the development of remote organ dysfunction, from which the lung is the main target. This condition is characterized by intense neutrophil recruitment, increased microvascular permeability. Intestinal IR is also responsible for induction of adult respiratory distress syndrome, the most serious and life-threatening form of acute lung injury. The purpose of this study was to investigate the effect of annexin-A1 protein as an endogenous regulator of the organ remote injury induced by intestinal ischemia/reperfusion. Male C57bl/6 mice were subjected to intestinal ischemia, induced by 45 min occlusion of the superior mesenteric artery, followed by reperfusion. RESULTS: The intestinal ischemia/reperfusion evoked a high intensity lung inflammation as indicated by the number of neutrophils as compared to control group. Treatment with annexin-A1 peptidomimetic Ac2-26, reduced the number of neutrophils in the lung tissue and increased its number in the blood vessels, which suggests a regulatory effect of the peptide Ac2-26 in the neutrophil migration. Moreover, the peptide Ac2-26 treatment was associated with higher levels of plasma IL-10. CONCLUSION: Our data suggest that the annexin-A1 peptidomimetic Ac2-26 treatment has a regulatory and protective effect in the intestinal ischemia/reperfusion by attenuation of the leukocyte migration to the lung and induction of the anti-inflammatory cytokine IL-10 release into the plasma. The anti-inflammatory action of annexin-A1 and its peptidomimetic described here may serve as a basis for future therapeutic approach in mitigating inflammatory processes due to intestinal

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Increased reactive oxygen species (ROS) promote matrix metalloproteinase (MMP) activities and may underlie cardiomyocyte injury and the degradation of cardiac troponin I (cTI) during acute pulmonary thromboembolism (APT). We examined whether pretreatment or therapy with tempol (a ROS scavenger) prevents MMP activation and cardiomyocyte injury of APT. Anesthetized sheep received tempol infusion (1.0 mg kg(-1) min(-1), i.v.) or saline starting 30 min before or 30 min after APT (autologous blood clots). Control animals received saline. Hemodynamic measurements were performed. MMPs were studied in the right ventricle (RV) by gelatin zymography, fluorimetric activity assay, and in situ zymography. The ROS levels were determined in the RV and cTI were measured in serum samples. APT increased the pulmonary arterial pressure and pulmonary vascular resistance by 146 and 164 %, respectively. Pretreatment or therapy with tempol attenuated these increases. While APT increased RV + dP/dt (max), tempol infusions had no effects. APT increased RV MMP-9 (but not MMP-2) levels. In line with these findings, APT increased RV MMP activities, and this finding was confirmed by in situ zymography. APT increased the RV ROS levels and tempol infusion, before or after APT, and blunted APT-induced increases in MMP-9 levels, MMP activities, in situ MMP activities, and ROS levels in the RV. cTI concentrations increased after APT, and tempol attenuated these increases. RV oxidative stress after APT increases the RV MMP activities, leading to the degradation of sarcomeric proteins, including cTI. Antioxidant treatment may prevent MMP activation and protect against cardiomyocyte injury after APT.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND Vorapaxar is a new oral protease-activated receptor 1 (PAR-1) antagonist that inhibits thrombin-induced platelet activation. METHODS In this multinational, double-blind, randomized trial, we compared vorapaxar with placebo in 12,944 patients who had acute coronary syndromes without ST-segment elevation. The primary end point was a composite of death from cardiovascular causes, myocardial infarction, stroke, recurrent ischemia with rehospitalization, or urgent coronary revascularization. RESULTS Follow-up in the trial was terminated early after a safety review. After a median follow-up of 502 days (interquartile range, 349 to 667), the primary end point occurred in 1031 of 6473 patients receiving vorapaxar versus 1102 of 6471 patients receiving placebo (Kaplan-Meier 2-year rate, 18.5010 vs. 19.9%; hazard ratio, 0.92; 95% confidence interval [CI], 0.85 to 1.01; P=0.07). A composite of death from cardiovascular causes, myocardial infarction, or stroke occurred in 822 patients in the vorapaxar group versus 910 in the placebo group (14.7% and 16.4%, respectively; hazard ratio, 0.89; 95% CI, 0.81 to 0.98; P=0.02). Rates of moderate and severe bleeding were 7.2% in the vorapaxar group and 5.2% in the placebo group (hazard ratio, 1.35; 95% CI, 1.16 to 1.58; P<0.001). Intracranial hemorrhage rates were 1.1% and 0.2%, respectively (hazard ratio, 3.39; 95% CI, 1.78 to 6.45; P<0.001). Rates of nonhemorrhagic adverse events were similar in the two groups. CONCLUSIONS In patients with acute coronary syndromes, the addition of vorapaxar to standard therapy did not significantly reduce the primary composite end point but significantly increased the risk of major bleeding, including intracranial hemorrhage. (Funded by Merck; TRACER ClinicalTrials.gov number, NCT00527943.)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ischemia/reperfusion injury (IRI) is a leading cause of acute renal failure. The definition of the molecular mechanisms involved in renal IRI and counter protection promoted by ischemic pre-conditioning (IPC) or Hemin treatment is an important milestone that needs to be accomplished in this research area. We examined, through an oligonucleotide microarray protocol, the renal differential transcriptome profiles of mice submitted to IRI, IPC and Hemin treatment. After identifying the profiles of differentially expressed genes observed for each comparison, we carried out functional enrichment analysis to reveal transcripts putatively involved in potential relevant biological processes and signaling pathways. The most relevant processes found in these comparisons were stress, apoptosis, cell differentiation, angiogenesis, focal adhesion, ECM-receptor interaction, ion transport, angiogenesis, mitosis and cell cycle, inflammatory response, olfactory transduction and regulation of actin cytoskeleton. In addition, the most important overrepresented pathways were MAPK, ErbB, JAK/STAT, Toll and Nod like receptors, Angiotensin II, Arachidonic acid metabolism, Wnt and coagulation cascade. Also, new insights were gained about the underlying protection mechanisms against renal IRI promoted by IPC and Hemin treatment. Venn diagram analysis allowed us to uncover common and exclusively differentially expressed genes between these two protective maneuvers, underscoring potential common and exclusive biological functions regulated in each case. In summary, IPC exclusively regulated the expression of genes belonging to stress, protein modification and apoptosis, highlighting the role of IPC in controlling exacerbated stress response. Treatment with the Hmox1 inducer Hemin, in turn, exclusively regulated the expression of genes associated with cell differentiation, metabolic pathways, cell cycle, mitosis, development, regulation of actin cytoskeleton and arachidonic acid metabolism, suggesting a pleiotropic effect for Hemin. These findings improve the biological understanding of how the kidney behaves after IRI. They also illustrate some possible underlying molecular mechanisms involved in kidney protection observed with IPC or Hemin treatment maneuvers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Little is known in our country about regional differences in the treatment of acute coronary disease. Objective: To analyze the behavior regarding the use of demonstrably effective regional therapies in acute coronary disease. Methods: A total of 71 hospitals were randomly selected, respecting the proportionality of the country in relation to geographic location, among other criteria. In the overall population was regionally analyzed the use of aspirin, clopidogrel, ACE inhibitors / AT1 blocker, beta-blockers and statins, separately and grouped by individual score ranging from 0 (no drug used) to 100 (all drugs used). In myocardial infarction with ST elevation (STEMI) regional differences were analyzed regarding the use of therapeutic recanalization (fibrinolytics and primary angioplasty). Results: In the overall population, within the first 24 hours of hospitalization, the mean score in the North-Northeast (70.5 +/- 22.1) was lower (p < 0.05) than in the Southeast (77.7 +/- 29.5), Midwest (82 +/- 22.1) and South (82.4 +/- 21) regions. At hospital discharge, the score of the North-Northeast region (61.4 +/- 32.9) was lower (p < 0.05) than in the Southeast (69.2 +/- 31.6), Midwest (65.3 +/- 33.6) and South (73.7 +/- 28.1) regions; additionally, the score of the Midwest was lower (p < 0.05) than the South region. In STEMI, the use of recanalization therapies was highest in the Southeast (75.4%, p = 0.001 compared to the rest of the country), and lowest in the North-Northeast (52.5%, p < 0.001 compared to the rest of the country). Conclusion: The use of demonstrably effective therapies in the treatment of acute coronary disease is much to be desired in the country, with important regional differences.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ischemia/reperfusion (I/R) injury remains a major cause of graft dysfunction, which impacts short- and long-term follow-up. Hyperbaric oxygen therapy (HBO), through plasma oxygen transport, has been currently used as an alternative treatment for ischemic tissues. The aim of this study was to analyze the effects of HBO on kidney I/R injury model in rats, in reducing the harmful effect of I/R. The renal I/R model was obtained by occluding bilateral renal pedicles with nontraumatic vascular clamps for 45 minutes, followed by 48 hours of reperfusion. HBO therapy was delivered an hypebaric chamber (2.5 atmospheres absolute). Animals underwent two sessions of 60 minutes each at 6 hours and 20 hours after initiation of reperfusion. Male Wistar rats (n = 38) were randomized into four groups: sham, sham operated rats; Sham+HBO, sham operated rats exposed to HBO; I/R, animals submitted to I/R; and I/R+HBO, I/R rats exposed to HBO. Blood, urine, and kidney tissue were collected for biochemical, histologic, and immunohistochemical analyses. The histopathological evaluation of the ischemic injury used a grading scale of 0 to 4. HBO attenuated renal dysfunction after ischemia characterized by a significant decrease in blood urea nitrogen (BUN), serum creatinine, and proteinuria in the I/R+HBO group compared with I/R alone. In parallel, tubular function was improved resulting in significantly lower fractional excretions of sodium and potassium. Kidney sections from the I/R plus HBO group showed significantly lower acute kidney injury scores compared with the I/R group. HBO treatment significantly diminished proliferative activity in I/R (P < .05). There was no significant difference in macrophage infiltration or hemoxygenase-1 expression. In conclusion, HBO attenuated renal dysfunction in a kidney I/R injury model with a decrease in BUN, serum creatinine, proteinuria, and fractional excretion of sodium and potassium, associated with reduced histological damage.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background. Intestinal ischemia and reperfusion (I/R) is a documented cause of acute lung injury (ALI) and systemic inflammation. We previously reported that obstruction of thoracic lymphatic flow during intestinal I/R blunts pulmonary neutrophil recruitment and microvascular injury and decreases the systemic levels of tumor necrosis factor. Here, we consider the existence of a gut-lung axis promoting the induction of systemic inflammation, whereby drained intestinal lymph stimulates lung expression of adhesion molecules and matrix components and generation of inflammatory mediators. Material and Methods. Upon administration of anesthesia, male Wistar rats were subjected to occlusion of the superior mesenteric artery for 45 min, followed by 2 h of intestinal reperfusion (I/R); groups of rats were subjected to I/R with or without thoracic lymphatic duct ligation immediately before the procedure. The non-manipulated rats were used to investigate basal parameters. Results. Obstruction of thoracic lymphatic flow before intestinal I/R decreased the ability of cultured lung tissue explants to release IL-1 beta, IL-10, and VEGF. In contrast, lymphatic obstruction normalized the elevated lung expression of PECAM-1 caused by intestinal I/R. On the other hand, lung E-selectin expression was significantly reduced, whereas fibronectin expression and collagen synthesis were not affected. Lymph levels of LTB4 and TXB2 were found to be significantly increased. Conclusions. These data suggest that lymph factors drained from the intestine during ischemic trauma stimulate the lung to generate inflammatory mediators and alter the expression of adhesion molecules. Disturbances in lung homeostasis mediated by lymph might contribute to the spread of inflammatory processes, thereby accounting for the systemic inflammation induced by intestinal I/R. (C) 2012 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Despite advances in supportive care, sepsis-related mortality remains high, especially in patients with acute kidney injury (AKI). Erythropoietin can protect organs against ischemia and sepsis. This effect has been linked to activation of intracellular survival pathways, although the mechanism remains unclear. Continuous erythropoietin receptor activator (CERA) is an erythropoietin with a unique pharmacologic profile and long half-life. We hypothesized that pretreatment with CERA would be renoprotective in the cecal ligation and puncture (CLP) model of sepsis-induced AKI. Methods: Rats were randomized into three groups: control; CLP; and CLP+CERA (5 mu g/kg body weight, i.p. administered 24 h before CLP). At 24 hours after CLP, we measured creatinine clearance, biochemical variables, and hemodynamic parameters. In kidney tissue, we performed immunoblotting-to quantify expression of the Na-K-2Cl cotransporter (NKCC2), aquaporin 2 (AQP2), Toll-like receptor 4 (TLR4), erythropoietin receptor (EpoR), and nuclear factor kappa B (NF-kappa B)-and immunohistochemical staining for CD68 (macrophage infiltration). Plasma interleukin (IL)-2, IL-1 beta, IL-6, IL-10, interferon gamma, and tumor necrosis factor alpha were measured by multiplex detection. Results: Pretreatment with CERA preserved creatinine clearance and tubular function, as well as the expression of NKCC2 and AQP2. In addition, CERA maintained plasma lactate at normal levels, as well as preserving plasma levels of transaminases and lactate dehydrogenase. Renal expression of TLR4 and NF-kappa B was lower in CLP+CERA rats than in CLP rats (p<0.05 and p<0.01, respectively), as were CD68-positive cell counts (p<0.01), whereas renal EpoR expression was higher (p<0.05). Plasma levels of all measured cytokines were lower in CLP+CERA rats than in CLP rats. Conclusion: CERA protects against sepsis-induced AKI. This protective effect is, in part, attributable to suppression of the inflammatory response.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background. Acute kidney injury (AKI) following prolonged laparoscopy is a documented phenomenon. Carbon dioxide pneumoperitoneum induces oxidative stress. Previous experimental studies have shown that the antioxidant, N-acetylcysteine, protects the rat from AKI following ischemia-reperfusion. The aim of this study was to evaluate the effects of N-acetylcysteine (NAC) on rat renal function after prolonged pneumoperitoneum. Methods. Normal rats treated or not with NAC were submitted to abdominal CO2 insufflation of 10 mmHg, at short and long periods of time of 1 and 3 h, respectively, and evaluated at 24, 72 h, and 1 wk after deinsufflation. Glomerular filtration rate (GFR) was measured by inulin clearance and oxidative stress was evaluated by serum thiobarbituric acid reactive substances (TBARS) Results. No significant alterations in GFR were observed in normal animals submitted to the pneumoperitoneum of 1 h and evaluated after 24 h desufflation. With 3 h of pneumoperitoneum, a significant and progressive decrease in GFR occurred 24 and 72 h after desufflation with an increase in serum TBARS. GFR returned to normal levels a week later. In the NAC-treated rats, a complete protection against GFR drops was observed 24 and 72 h following 3 h of pneumoperitoneum associated with a decrease in TBARS. Conclusion. These results suggest that NAC protects against acute kidney injury following prolonged pneumoperitoneum. These findings have significant clinical implications. (C) 2012 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

FUNDAMENTO: Pouco se sabe, em nosso meio, sobre diferenças regionais no tratamento da coronariopatia aguda. OBJETIVO: Analisar o comportamento regional relativamente à utilização de terapêuticas comprovadamente úteis na coronariopatia aguda. MÉTODOS: Foram selecionados aleatoriamente 71 hospitais, respeitando-se a proporcionalidade do país em relação à localização geográfica, entre outros critérios. Na população global, foi analisada regionalmente a utilização de AAS, clopidogrel, inibidor da ECA/bloqueador de AT1, betabloqueador e estatina, isoladamente e agrupados por escore individual que variou de 0 (nenhum medicamento utilizado) a 100 (todos utilizados). No infarto com supradesnivelamento de ST (IAMCSST) foram analisadas diferenças regionais sobre utilização de terapêuticas de recanalização (fibrinolíticos e angioplastia primária). RESULTADOS: No global da população, nas primeiras 24 horas de hospitalização, a média de escore na região Norte-Nordeste (70,5 ± 22,1) foi menor (p < 0,05) do que nas regiões Sudeste (77,7 ± 29,5), Centro-Oeste (82 ± 22,1) e Sul (82,4 ± 21). Por ocasião da alta, o escore da região Norte-Nordeste (61,4 ± 32,9) foi menor (p < 0,05) do que nas regiões Sudeste (69,2 ± 31,6), Centro-Oeste (65,3 ± 33,6), e Sul (73,7 ± 28,1); adicionalmente, o escore do Centro-Oeste foi menor (p < 0,05) do que o do Sul. No IAMCSST, o uso de terapêuticas de recanalização foi maior no Sudeste (75,4%, p = 0,001 em relação ao restante do país), e menor no Norte-Nordeste (52,5%, p < 0,001 em relação ao restante do país). CONCLUSÃO: O uso de terapêuticas comprovadamente úteis no tratamento da coronariopatia aguda está aquém do desejável no país, com importantes diferenças regionais.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Ischemia and reperfusion (IR) injury remains a major cause of morbidity and mortality and multiple molecular and cellular pathways have been implicated in this injury. We determined whether acute inhibition of excessive mitochondrial fission at the onset of reperfusion improves mitochondrial dysfunction and cardiac contractility postmyocardial infarction in rats. METHODS AND RESULTS: We used a selective inhibitor of the fission machinery, P110, which we have recently designed. P110 treatment inhibited the interaction of fission proteins Fis1/Drp1, decreased mitochondrial fission, and improved bioenergetics in three different rat models of IR, including primary cardiomyocytes, ex vivo heart model, and an in vivo myocardial infarction model. Drp1 transiently bound to the mitochondria following IR injury and P110 treatment blocked this Drp1 mitochondrial association. Compared with control treatment, P110 (1 μmol/L) decreased infarct size by 28 ± 2% and increased adenosine triphosphate levels by 70+1% after IR relative to control IR in the ex vivo model. Intraperitoneal injection of P110 (0.5 mg/kg) at the onset of reperfusion in an in vivo model resulted in improved mitochondrial oxygen consumption by 68% when measured 3 weeks after ischemic injury, improved cardiac fractional shortening by 35%, reduced mitochondrial H2O2 uncoupling state by 70%, and improved overall mitochondrial functions. CONCLUSIONS: Together, we show that excessive mitochondrial fission at reperfusion contributes to long-term cardiac dysfunction in rats and that acute inhibition of excessive mitochondrial fission at the onset of reperfusion is sufficient to result in long-term benefits as evidenced by inhibiting cardiac dysfunction 3 weeks after acute myocardial infarction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

AIMS: We evaluated the mechanisms involved in insulin-induced vasodilatation after acute resistance exercise in healthy rats. MAIN METHODS: Wistar rats were divided into 3 groups: control (CT), electrically stimulated (ES) and resistance exercise (RE). Immediately after acute RE (15 sets with 10 repetitions at 70% of maximal intensity), the animals were sacrificed and rings of mesenteric artery were mounted in an isometric system. After this, concentration-response curves to insulin were performed in control condition and in the presence of LY294002 (PI3K inhibitor), L-NAME (NOS inhibitor), L-NAME+TEA (K(+) channels inhibitor), LY294002+BQ123 (ET-A antagonist) or ouabain (Na(+)/K(+) ATPase inhibitor). KEY FINDINGS: Acute RE increased insulin-induced vasorelaxation as compared to control (CT: Rmax=7.3 ± 0.4% and RE: Rmax=15.8 ± 0.8%; p<0.001). NOS inhibition reduced (p<0.001) this vasorelaxation from both groups (CT: Rmax=2.0 ± 0.3%, and RE: Rmax=-1.2 ± 0.1%), while PI3K inhibition abolished the vasorelaxation in CT (Rmax=-0.1±0.3%, p<0.001), and caused vasoconstriction in RE (Rmax=-6.5 ± 0.6%). That insulin-induced vasoconstriction on PI3K inhibition was abolished (p<0.001) by the ET-A antagonist (Rmax=2.9 ± 0.4%). Additionally, acute RE enhanced (p<0.001) the functional activity of the ouabain-sensitive Na(+)/K(+) ATPase activity (Rmax=10.7 ± 0.4%) and of the K(+) channels (Rmax=-6.1±0.5%; p<0.001) in the insulin-induced vasorelaxation as compared to CT. SIGNIFICANCE: Such results suggest that acute RE promotes enhanced insulin-induced vasodilatation, which could act as a fine tuning to vascular tone.