5 resultados para 6-52
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Purpose: To evaluate endothelial cell sample size and statistical error in corneal specular microscopy (CSM) examinations. Methods: One hundred twenty examinations were conducted with 4 types of corneal specular microscopes: 30 with each BioOptics, CSO, Konan, and Topcon corneal specular microscopes. All endothelial image data were analyzed by respective instrument software and also by the Cells Analyzer software with a method developed in our lab(US Patent). A reliability degree (RD) of 95% and a relative error (RE) of 0.05 were used as cut-off values to analyze images of the counted endothelial cells called samples. The sample size mean was the number of cells evaluated on the images obtained with each device. Only examinations with RE<0.05 were considered statistically correct and suitable for comparisons with future examinations. The Cells Analyzer software was used to calculate the RE and customized sample size for all examinations. Results: Bio-Optics: sample size, 97 +/- 22 cells; RE, 6.52 +/- 0.86; only 10% of the examinations had sufficient endothelial cell quantity (RE<0.05); customized sample size, 162 +/- 34 cells. CSO: sample size, 110 +/- 20 cells; RE, 5.98 +/- 0.98; only 16.6% of the examinations had sufficient endothelial cell quantity (RE<0.05); customized sample size, 157 +/- 45 cells. Konan: sample size, 80 +/- 27 cells; RE, 10.6 +/- 3.67; none of the examinations had sufficient endothelial cell quantity (RE>0.05); customized sample size, 336 +/- 131 cells. Topcon: sample size, 87 +/- 17 cells; RE, 10.1 +/- 2.52; none of the examinations had sufficient endothelial cell quantity (RE>0.05); customized sample size, 382 +/- 159 cells. Conclusions: A very high number of CSM examinations had sample errors based on Cells Analyzer software. The endothelial sample size (examinations) needs to include more cells to be reliable and reproducible. The Cells Analyzer tutorial routine will be useful for CSM examination reliability and reproducibility.
Resumo:
Objective: The flexural strength and the elastic modulus of acrylic resins, Dencor, Duralay and Trim Plus II, were evaluated with and without the addition of silanised glass fibre. Materials and methods: To evaluate the flexural strength and elastic modulus, 60 test specimens were fabricated with the addition of 10% ground silanised glass fibres for the experimental group, and 60 without the incorporation of fibres, for the control group, with 20 test specimens being made of each commercial brand of resin (Dencor, Duralay and Trim Plus II) for the control group and experimental group. After the test specimens had been completed, the flexural strength and elastic modulus tests were performed in a universal testing device, using the three-point bending test. For the specimens without fibres the One-Way Analysis of Variance and the complementary Tukey test were used, and for those with fibres it was not normal, so that the non-parametric Mann-Whitney test was applied. Results: For the flexural strength test, there was no statistical difference (p > 0.05) between each commercial brand of resin without fibres [Duralay 84.32(+/- 8.54), Trim plus 85.39(+/- 6.74), Dencor 96.70(+/- 6.52)] and with fibres (Duralay 87.18, Trim plus 88.33, Dencor 98.10). However, for the elastic modulus, there was statistical difference (p > 0.01) between each commercial brand of resin without fibres [Duralay 2380.64 (+/- 168.60), Trim plus 2740.37(+/- 311.74), Dencor 2595.42(+/- 261.22)] and with fibres (Duralay 3750.42, Trim plus 3188.80, Dencor 3400.75). Conclusion: The result showed that the incorporation of fibre did not interfere in the flexural strength values, but it increased the values for the elastic modulus.
Resumo:
The objective of this work was to study the morphology and biometry of the infraorbital foramen (FIO), variations in its shape, size and number as well as to obtain measurements of its location. 60 dry skulls were analyzed. The test of Qui-quadrant and the T Test were used in measurements with a 5% significance. On the right side, the FIO was measured at a distance of 6.49(+/- 1.68) mm from the lower, 39.65(+/- 3) mm from the upper, 17.7(+/- 2.97) mm from the medial and 20.46(+/- 2.9) mm from the lateral margin of the orbit; its pear-shaped opening distance was 13.67(+/- 2.17) mm. On the left side, the distance of the FIO to the lower margin of the orbit was 6.52(+/- 1.82) mm; to the upper margin was 39.9(+/- 2.62) mm and to the lateral and medial margin were 17.93(+/- 2.58) mm and 21.12(+/- 3) mm, respectively; its distance to the pear-shaped opening was 14.26(+/- 1.83) mm. It was found predominately in an oval shape, in 39 (65%) of the skulls, on both sides. Accessory foramens were present in 11 samples on the right and in 15 samples on the left side. The FIO was most frequently found on the side of, or laterally to the sagittal plane that passes through the middle of the supraorbital foramen/incisures, in 38 skulls (63.3%) on the right side and in 45 skulls (75%) on the left and middle to the zigomatic-maxillary suture, in 41 skulls (68.3%) on right and in 42 skulls (70%) on the left side, besides being most frequently found in a region between the first and second premolars, in 22 skulls (36.7%) on the right side and in 17 skulls (28.3%) on the left.
Resumo:
Introduction The primary end points of randomized clinical trials evaluating the outcome of therapeutic strategies for coronary artery disease (CAD) have included nonfatal acute myocardial infarction, the need for further revascularization, and overall mortality. Noncardiac causes of death may distort the interpretation of the long-term effects of coronary revascularization. Materials and methods This post-hoc analysis of the second Medicine, Angioplasty, or Surgery Study evaluates the cause of mortality of patients with multivessel CAD undergoing medical treatment, percutaneous coronary intervention, or surgical myocardial revascularization [coronary artery bypass graft surgery (CABG)] after a 6-year follow-up. Mortality was classified as cardiac and noncardiac death, and the causes of noncardiac death were reported. Results Patients were randomized into CABG and non-CABG groups (percutaneous coronary intervention plus medical treatment). No statistical differences were observed in overall mortality (P = 0.824). A significant difference in the distribution of causes of mortality was observed among the CABG and non-CABG groups (P = 0.003). In the CABG group, of the 203 randomized patients, the overall number of deaths was 34. Sixteen patients (47.1%) died of cardiac causes and 18 patients (52.9%) died of noncardiac causes. Of these, seven deaths (20.6%) were due to neoplasia. In the non-CABG group, comprising 408 patients, the overall number of deaths was 69. Fifty-three patients (77%) died of cardiac causes and 16 patients (23%) died of noncardiac causes. Only five deaths (7.2%) were due to neoplasia. Conclusion Different treatment options for multivessel coronary artery disease have similar overall mortality: CABG patients had the lowest incidence of cardiac death, but the highest incidence of noncardiac causes of death, and specifically a higher tendency toward cancer-related deaths. Coron Artery Dis 23:79-84 (C) 2012 Wolters Kluwer Health | Lippincott Williams & Wilkins.
Resumo:
We studied the energy and frequency dependence of the Fourier time lags and intrinsic coherence of the kilohertz quasi-periodic oscillations (kHz QPOs) in the neutron-star lowmass X-ray binaries 4U 1608−52 and 4U 1636−53, using a large data set obtained with the Rossi X-ray Timing Explorer. We confirmed that, in both sources, the time lags of the lower kHz QPO are soft and their magnitude increases with energy. We also found that: (i) In 4U 1636−53, the soft lags of the lower kHz QPO remain constant at∼30 μs in the QPO frequency range 500–850 Hz, and decrease to ∼10 μs when the QPO frequency increases further. In 4U 1608−52, the soft lags of the lower kHz QPO remain constant at 40 μs up to 800 Hz, the highest frequency reached by this QPO in our data. (ii) In both sources, the time lags of the upper kHz QPO are hard, independent of energy or frequency and inconsistent with the soft lags of the lower kHz QPO. (iii) In both sources the intrinsic coherence of the lower kHz QPO remains constant at ∼0.6 between 5 and 12 keV, and drops to zero above that energy. The intrinsic coherence of the upper kHz QPO is consistent with being zero across the full energy range. (iv) In 4U 1636−53, the intrinsic coherence of the lower kHz QPO increases from ∼0 at ∼600 Hz to ∼1, and it decreases to ∼0.5 at 920 Hz; in 4U 1608−52, the intrinsic coherence is consistent with the same trend. (v) In both sources the intrinsic coherence of the upper kHz QPO is consistent with zero over the full frequency range of the QPO, except in 4U 1636−53 between 700 and 900 Hz where the intrinsic coherence marginally increases. We discuss our results in the context of scenarios in which the soft lags are either due to reflection off the accretion disc or up-/down-scattering in a hot medium close to the neutron star. We finally explore the connection between, on one hand the time lags and the intrinsic coherence of the kHz QPOs, and on the other the QPOs’ amplitude and quality factor in these two sources.