4 resultados para 33KF20040801-track
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
PTFE foils were irradiated with different ion beams (Xe, Au and U) with energies up to 1.5 GeV and fluences between 1 x 10(8) and 1 x 10(13) ions/cm(2) at room temperature. The induced modifications in the polymer were analyzed by FTIR, UV-Vis spectroscopy, and XRD. In the FTIR spectra, the CF2 degradation accompanied by the formation of CF3 terminal and side groups were observed. In the UV-Vis spectra, the observed increase in the absorption at UV wavelengths is an indication of polymer carbonization. From XRD, the amorphization of the material was evidenced by the decrease in the intensity of the main diffraction peak. An exponential fit of the intensity of the IR absorption peaks resulted in the following values: 2.9 +/- 0.8; 4.5 +/- 0.9 and 5.6 +/- 0.8 nm for the latent track radius after irradiation with Xe, Au and U beams, respectively. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
This manuscript reports the first example of up-conversion properties involving Yb3+ and Tb3+ ions in five isostructural Lanthanide-Organic Frameworks (LnOFs), herein designated as UCMarker-1 to UCMarker-5, respectively, and their application as optical probes for the identification of gunshot residues (GSRs) and the ammunition encryption procedure. The excitation of the Yb3+2 F-7/2 <-> F-2(5/2) transition (980 nm) at room temperature leads to visible up-conversion (UC) emission of Tb3+ D-5(4) -> F-7(J). The GSR and lead-free primer residues are easily identified upon UV radiation (lambda = 254 nm). These results prove that the exploration of LnOFs to identify GSR is attractive for the identification of ammunition origins or caliber recognition.
Resumo:
Fast-track Diagnostics respiratory pathogens (FTDRP) multiplex real-time RT-PCR assay was compared with in-house singleplex real-time RT-PCR assays for detection of 16 common respiratory viruses. The FTDRP assay correctly identified 26 diverse respiratory virus strains, 35 of 41 (85%) external quality assessment samples spiked with cultured virus and 232 of 263 (88%) archived respiratory specimens that tested positive for respiratory viruses by in-house assays. Of 308 prospectively tested respiratory specimens selected from children hospitalized with acute respiratory illness, 270 (87.7%) and 265 (86%) were positive by FTDRP and in-house assays for one or more viruses, respectively, with combined test results showing good concordance (K=0.812, 95% CI = 0.786-0.838). Individual FTDRP assays for adenovirus, respiratory syncytial virus and rhinovirus showed the lowest comparative sensitivities with in-house assays, with most discrepancies occurring with specimens containing low virus loads and failed to detect some rhinovirus strains, even when abundant. The FTDRP enterovirus and human bocavirus assays appeared to be more sensitive than the in-house assays with some specimens. With the exceptions noted above, most FTDRP assays performed comparably with in-house assays for most viruses while offering enhanced throughput and easy integration by laboratories using conventional real-time PCR instrumentation. Published by Elsevier B.V.
Resumo:
While many developed countries have invested heavily in research on plant invasions over the last 50 years, the immense region of Latin America has made little progress. Recognising this, a group of scientists working on plant invasions in Latin America met in Chile in late 2010 to develop a research agenda for the region based on lessons learned elsewhere. Our three main findings are as follows. (1) Globalisation is inevitable, but the resultant plant introductions can be slowed or prevented by effective quarantine and early intervention. Development of spatially explicit inventories, research on the invasion process and weed risk assessments can help prioritise and streamline action. (2) Eradication has limited application for plants and control is expensive and requires strict prioritisation and careful planning and evaluation. (3) Accepting the concept of novel ecosystems, new combinations of native and introduced species that no longer depend on human intervention, may help optimise invasive species management. Our vision of novel ecosystem management is through actions that: (a) maintain as much native biodiversity and ecosystem functionality as possible, (b) minimise management intervention to invasives with known impact, and (c) maximise the area of intervention. We propose the creation of a Latin American Invasive Plants Network to help focus the new research agenda for member countries. The network would coordinate research and training and establish funding priorities, develop and strengthen tools to share knowledge, and raise awareness at the community, governmental and intergovernmental levels about the social, economic and environmental costs of plant invasions.