3 resultados para 32-310
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Objective To assess several baseline risk factors that may predict patellofemoral and tibiofemoral cartilage loss during a 6-month period. Methods For 177 subjects with chronic knee pain, 3T magnetic resonance imaging (MRI) of both knees was performed at baseline and followup. Knees were semiquantitatively assessed, evaluating cartilage morphology, subchondral bone marrow lesions, meniscal morphology/extrusion, synovitis, and effusion. Age, sex, and body mass index (BMI), bone marrow lesions, meniscal damage/extrusion, synovitis, effusion, and prevalent cartilage damage in the same subregion were evaluated as possible risk factors for cartilage loss. Logistic regression models were applied to predict cartilage loss. Models were adjusted for age, sex, treatment, and BMI. Results Seventy-nine subregions (1.6%) showed incident or worsening cartilage damage at followup. None of the demographic risk factors was predictive of future cartilage loss. Predictors of patellofemoral cartilage loss were effusion, with an adjusted odds ratio (OR) of 3.5 (95% confidence interval [95% CI] 1.39.4), and prevalent cartilage damage in the same subregion with an adjusted OR of 4.3 (95% CI 1.314.1). Risk factors for tibiofemoral cartilage loss were baseline meniscal extrusion (adjusted OR 3.6 [95% CI 1.310.1]), prevalent bone marrow lesions (adjusted OR 4.7 [95% CI 1.119.5]), and prevalent cartilage damage (adjusted OR 15.3 [95% CI 4.947.4]). Conclusion Cartilage loss over 6 months is rare, but may be detected semiquantitatively by 3T MRI and is most commonly observed in knees with Kellgren/Lawrence grade 3. Predictors of patellofemoral cartilage loss were effusion and prevalent cartilage damage in the same subregion. Predictors of tibiofemoral cartilage loss were prevalent cartilage damage, bone marrow lesions, and meniscal extrusion.
Resumo:
OBJETIVO: Identificar os acidentes de trabalho com exposição à material biológico ocorridos em um hospital universitário, discutindo os resultados com o processo de implementação das medidas de segurança e saúde dos trabalhadores, exigidas pela Norma Regulamentadora NR-32. MÉTODOS: Estudo exploratório de abordagem quantitativa dos dados. Foram realizados levantamento dos acidentes de trabalho, as entrevistas com o coordenador do Serviço de Segurança e Medicina do Trabalho e a análise de dados documentais do Programa de Prevenção de Riscos Ambientais e do Programa de Controle Médico de Saúde Ocupacional. RESULTADOS: O percentual de acidentes de trabalho reduziu ao longo do período, no qual várias exigências dessa norma foram sendo adotadas. Acidentes com material perfurocortante foram os mais frequentes, não havendo em todos os setores do hospital o oferecimento dos dispositivos de segurança exigidos pela NR-32. CONCLUSÃO: Houve redução de acidentes de trabalho com material biológico no hospital estudado entre 2007 e 2009. Contudo, não é quantitativamente significativa, apesar da implantação de várias diretrizes da NR-32 ao longo dos anos. É necessária a colaboração entre gestores, serviços de segurança e trabalhadores na promoção da saúde no trabalho.
Resumo:
Experimental two-phase frictional pressure drop and flow boiling heat transfer results are presented for a horizontal 2.32-mm ID stainless-steel tube using R245fa as working fluid. The frictional pressure drop data was obtained under adiabatic and diabatic conditions. Experiments were performed for mass velocities ranging from 100 to 700 kg m−2 s−1 , heat flux from 0 to 55 kW m−2 , exit saturation temperatures of 31 and 41◦C, and vapor qualities from 0.10 to 0.99. Pressures drop gradients and heat transfer coefficients ranging from 1 to 70 kPa m−1 and from 1 to 7 kW m−2 K−1 were measured. It was found that the heat transfer coefficient is a strong function of the heat flux, mass velocity, and vapor quality. Five frictional pressure drop predictive methods were compared against the experimental database. The Cioncolini et al. (2009) method was found to work the best. Six flow boiling heat transfer predictive methods were also compared against the present database. Liu and Winterton (1991), Zhang et al. (2004), and Saitoh et al. (2007) were ranked as the best methods. They predicted the experimental flow boiling heat transfer data with an average error around 19%.