55 resultados para NORMAL STATE PROPERTIES
Resumo:
Background: Placental and fetal growth requires high rates of cellular turnover and differentiation, which contributes to conceptus development. The trophoblast has unique properties and a wide range of metabolic, endocrine and angiogenic functions, but the proliferative profile of the bovine placenta characterized by flow cytometry analysis and its role in fetal development are currently uncharacterized. Complete understanding of placental apoptotic and proliferative rates may be relevant to development, especially if related to the pathogenesis of pregnancy losses and placental abnormalities. Methods: In this study, the proliferation activity and apoptosis in different regions of normal bovine placenta (central and boundary regions of placentomes, placentomal fusion, microplacentomes, and interplacentomal regions), from distinct gestation periods (Days 70 to 290 of pregnancy), were analyzed by flow cytometry. Results: Our results indicated that microplacentomes presented a lower number of apoptotic cells throughout pregnancy, with a higher proliferative activity by the end of gestation, suggesting that such structures do not contribute significantly to normal of placental functions and conceptus development during pregnancy. The placentome edges revealed a higher number of apoptotic cells from Day 170 on, which suggests that placentome detachment may well initiate in this region. Conclusion: Variations involving proliferation and apoptotic rates may influence placental maturation and detachment, compromising placental functions and leading to fetal stress, abnormalities in development and abortion, as frequently seen in bovine pregnancies from in vitro fertilization and cloning procedures. Our findings describing the pattern of cell proliferation and apoptosis in normal bovine pregnancies may be useful for unraveling some of the developmental deviations seen in nature and after in vitro embryo manipulations.
Resumo:
In this article, using first-principles electronic structure calculations within the spin density functional theory, alternated magnetic and non-magnetic layers of rutile-CrO2 and rutile-SnO2 respectively, in a (CrO2) n (SnO2) n superlattice (SL) configuration, with n being the number of monolayers which are considered equal to 1, 2, ..., 10 are studied. A half-metallic behavior is observed for the (CrO2) n (SnO2) n SLs for all values of n. The ground state is found to be FM with a magnetic moment of 2 μB per chromium atom, and this result does not depend on the number of monolayers n. As the FM rutile-CrO2 is unstable at ambient temperature, and known to be stabilized when on top of SnO2, the authors suggest that (CrO2) n (SnO2) n SLs may be applied to spintronic technologies since they provide efficient spin-polarized carriers.
Resumo:
CONTEXT: Esophageal dysphagia is the sensation that the ingested material has a slow transit or blockage in its normal passage to the stomach. It is not always associated with motility or transit alterations. OBJECTIVES: To evaluate in normal volunteers the possibility of perception of bolus transit through the esophagus after swallows of liquid and solid boluses, the differences in esophageal contraction and transit with these boluses, and the association of transit perception with alteration of esophageal contraction and/or transit. METHODS: The investigation included 11 asymptomatic volunteers, 4 men and 7 women aged 19-58 years. The subjects were evaluated in the sitting position. They performed swallows of the same volume of liquid (isotonic drink) and solid (macaroni) boluses in a random order and in duplicate. After each swallow they were asked about the sensation of bolus passage through the esophagus. Contractions and transit were evaluated simultaneously by solid state manometry and impedance. RESULTS: Perception of bolus transit occurred only with the solid bolus. The amplitude and area under the curve of contractions were higher with swallows of the solid bolus than with swallows of the liquid bolus. The difference was more evident in swallows with no perception of transit (n = 12) than in swallows with perception (n = 10). The total bolus transit time was longer for the solid bolus than for the liquid bolus only with swallows followed by no perception of transit. CONCLUSION: The results suggest that the perception of esophageal transit may be the consequence of inadequate adaptation of esophageal transit and contraction to the characteristics of the swallowed bolus.
Resumo:
Among the soils in the Mato Grosso do Sul, stand out in the Pantanal biome, the Spodosols. Despite being recorded in considerable extensions, few studies aiming to characterize and classify these soils were performed. The purpose of this study was to characterize and classify soils in three areas of two physiographic types in the Taquari river basin: bay and flooded fields. Two trenches were opened in the bay area (P1 and P2) and two in the flooded field (P3 and P4). The third area (saline) with high sodium levels was sampled for further studies. In the soils in both areas the sand fraction was predominant and the texture from sand to sandy loam, with the main constituent quartz. In the bay area, the soil organic carbon in the surface layer (P1) was (OC) > 80 g kg-1, being diagnosed as Histic epipedon. In the other profiles the surface horizons had low OC levels which, associated with other properties, classified them as Ochric epipedons. In the soils of the bay area (P1 and P2), the pH ranged from 5.0 to 7.5, associated with dominance of Ca2+ and Mg2+, with base saturation above 50 % in some horizons. In the flooded fields (P3 and P4) the soil pH ranged from 4.9 to 5.9, H+ contents were high in the surface horizons (0.8-10.5 cmol c kg-1 ), Ca2+ and Mg² contents ranged from 0.4 to 0.8 cmol c kg-1 and base saturation was < 50 %. In the soils of the bay area (P1 and P2) iron was accumulated (extracted by dithionite - Fed) and OC in the spodic horizon; in the P3 and P4 soils only Fed was accumulated (in the subsurface layers). According to the criteria adopted by the Brazilian System of Soil Classification (SiBCS) at the subgroup level, the soils were classified as: P1: Organic Hydromorphic Ferrohumiluvic Spodosol. P2: Typical Orthic Ferrohumiluvic Spodosol. P3: Typical Hydromorphic Ferroluvic Spodosol. P4: Arenic Orthic Ferroluvic Spodosol.
Resumo:
Leaching of nitrate (NO3-) can increase the groundwater concentration of this anion and reduce the agronomical effectiveness of nitrogen fertilizers. The main soil property inversely related to NO3- leaching is the anion exchange capacity (AEC), whose determination is however too time-consuming for being carried out in soil testing laboratories. For this reason, this study evaluated if more easily measurable soil properties could be used to estimate the resistance of subsoils to NO3- leaching. Samples from the subsurface layer (20-40 cm) of 24 representative soils of São Paulo State were characterized for particle-size distribution and for chemical and electrochemical properties. The subsoil content of adsorbed NO3- was calculated from the difference between the NO3- contents extracted with 1 mol L-1 KCl and with water; furthermore, NO3- leaching was studied in miscible displacement experiments. The results of both adsorption and leaching experiments were consistent with the well-known role exerted by AEC on the nitrate behavior in weathered soils. Multiple regression analysis indicated that in subsoils with (i) low values of remaining phosphorus (Prem), (ii) low soil pH values measured in water (pH H2O), and (iii) high pH values measured in 1 moL L-1 KCl (pH KCl), the amounts of surface positive charges tend to be greater. For this reason, NO3- leaching tends to be slower in these subsoils, even under saturated flow condition.
Resumo:
The aim of this study was to describe the distribution of waist circumference (WC) and WC to height (WCTH) values among Kaingáng indigenous adolescents in order to estimate the prevalence of high WCTH values and evaluate the correlation between WC and WCTH and body mass index (BMI)-for-age. A total of 1,803 indigenous adolescents were evaluated using a school-based cross-sectional study. WCTH values > 0.5 were considered high. Higher mean WC and WCTH values were observed for girls in all age categories. WCTH values > 0.5 were observed in 25.68% of the overall sample of adolescents. Mean WC and WCTH values were significantly higher for adolescents with BMI/age z-scores > 2 than for those with normal z-scores. The correlation coefficients of WC and WCTH for BMI/age were r = 0.68 and 0.76, respectively, for boys, and r = 0.79 and 0.80, respectively, for girls. This study highlights elevated mean WC and WCTH values and high prevalence of abdominal obesity among Kaingáng indigenous adolescents.
Resumo:
The pulmonary surfactant has essential physical properties for normal lung function. The most important property is the surface tension. In this work, it was evaluated the surface tension of two commercial exogenous surfactants used in surfactant replacement therapy, poractant alfa (Curosurf, Chiesi Farmaceuticals, Italy) and beractant (Survanta, Abbott Laboratories, USA) using new parameters. A Langmuir film balance (Minitrough, KSV Instruments, Finland) was used to measure surface tension of poractant alfa and beractant samples. For both samples, we prepared a solution of 1 mg/m dissolved in chloroform (100π`), which was applied over a subphase of milli-Q water (175 ml) in the chamber of the balance. The chamber has two moving barriers that can change its surface area between a maximal value of 112.5 cm 2 , and a minimal value of 22.5 cm 2, defining a balance cycle. Each surfactant had its surface tension evaluated during 20 balance cycles for three times. Four quantities were calculated from the experiment: Minimum Surface Tension (MTS), defined as the surface tension at minimal surface area during the first cycle; Mean Work Cycle (MWC), defined as the mean hysteresis area of the measured surface tension curve of the last 16 balance cycles; Critical Active Surface Area in Compression (CASAC) or in Expansion (CASAE), defined as the maximal chamber area where the surfactant is active on the surface in compression or expansion. The t-test was applied to verify for statistical significance of the results. Comproved with the MST is the same reported in literature, the differences between MWC, CASAC, and CASAE were statistically significant (p<0.001). The MWC, CASAC and CASAE were higher for poractant alfa than for beractant. A higher MWC for poractant alfa means higher elastic recoil of the lung in comparison with beractant. Using a different methodology, our results showed that poractant alfa is probably more effective in a surfactant replacement therapy than beractant due the use of poractant alfa in relation to the use of beractant in preterm infants with Respiratory Distress Syndrome (RDS).
Resumo:
Low level laser therapy is used as a treatment of several conditions, including inflammatory processes and wound healing. Possible changes in mechanical properties of cells, caused by illumination, are investigated with optical magnetic twisting cytometry (OMTC), which is a technique used to evaluate mechanical properties in cell culture. Ferromagnetic micro beads are bound to cell cytoskeleton, the beads are magnetized vertically and a horizontal twisting magnetic field is applied causing a torque that moves the beads and deforms the cell, the beads rotate and displace. Based on the lateral displacement of the beads, elastic shear and loss moduli are obtained. Samples of human bronchial epithelial cell culture were divided in two groups: one was illuminated with a 660 nm red laser, 30 mW power, 0.75 W/cm2 irradiance, during different time intervals, and the other one, the control group, was not illuminated. The values of the mechanical constants of the cells of the control group showed a tendency of increasing with the time out of the incubator. On the other hand, the illuminated group showed constancy on the behavior of both moduli, keeping the normal conditions of the cell culture. Those results indicate that illumination can induce cells to homeostasis, and OMTC is sensitive to observe departures from the steady conditions. Hence, OMTC is an important technique which can be used to aggregate knowledge on the light effect in cell cytoskeleton and even on the low level laser therapy mechanisms in inflammatory processes and/or wound healing.
Resumo:
Low level laser therapy is used as a treatment of several conditions, including inflammatory processes and wound healing. Possible changes in mechanical properties of cells, caused by illumination, are investigated with optical magnetic twisting cytometry (OMTC), which is a technique used to evaluate mechanical properties in cell culture. Ferromagnetic micro beads are bound to cell cytoskeleton, the beads are magnetized vertically and a horizontal twisting magnetic field is applied causing a torque that moves the beads and deforms the cell, the beads rotate and displace. Based on the lateral displacement of the beads, elastic shear and loss moduli are obtained. Samples of human bronchial epithelial cell culture were divided in two groups: one was illuminated with a 660 nm red laser, 30 mW power, 0.75 W/cm2 irradiance, during different time intervals, and the other one, the control group, was not illuminated. The values of the mechanical constants of the cells of the control group showed a tendency of increasing with the time out of the incubator. On the other hand, the illuminated group showed constancy on the behavior of both moduli, keeping the normal conditions of the cell culture. Those results indicate that illumination can induce cells to homeostasis, and OMTC is sensitive to observe departures from the steady conditions. Hence, OMTC is an important technique which can be used to aggregate knowledge on the light effect in cell cytoskeleton and even on the low level laser therapy mechanisms in inflammatory processes and/or wound healing.
Resumo:
In molecular and atomic devices the interaction between electrons and ionic vibrations has an important role in electronic transport. The electron-phonon coupling can cause the loss of the electron's phase coherence, the opening of new conductance channels and the suppression of purely elastic ones. From the technological viewpoint phonons might restrict the efficiency of electronic devices by energy dissipation, causing heating, power loss and instability. The state of the art in electron transport calculations consists in combining ab initio calculations via Density Functional Theory (DFT) with Non-Equilibrium Green's Function formalism (NEGF). In order to include electron-phonon interactions, one needs in principle to include a self-energy scattering term in the open system Hamiltonian which takes into account the effect of the phonons over the electrons and vice versa. Nevertheless this term could be obtained approximately by perturbative methods. In the First Born Approximation one considers only the first order terms of the electronic Green's function expansion. In the Self-Consistent Born Approximation, the interaction self-energy is calculated with the perturbed electronic Green's function in a self-consistent way. In this work we describe how to incorporate the electron-phonon interaction to the SMEAGOL program (Spin and Molecular Electronics in Atomically Generated Orbital Landscapes), an ab initio code for electronic transport based on the combination of DFT + NEGF. This provides a tool for calculating the transport properties of materials' specific system, particularly in molecular electronics. Preliminary results will be presented, showing the effects produced by considering the electron-phonon interaction in nanoscale devices.