91 resultados para percutaneous transthoracic lung biopsy
Resumo:
We hypothesized that bone marrow-derived mononuclear cell (BMDMC) therapy protects the lung and consequently the heart in experimental elastase-induced emphysema. Twenty-four female C57BL/6 mice were intratracheally instilled with saline (C group) or porcine pancreatic elastase (E group) once a week during 4 weeks. C and E groups were randomized into subgroups receiving saline (SAL) or male BMDMCs (2 x 10(6), CELL) intravenously 3 h after the first saline or elastase instillation. Compared to E-SAL group, E-CELL mice showed, at 5 weeks: lower mean linear intercept, neutrophil infiltration, elastolysis, collagen fiber deposition in alveolar septa and pulmonary vessel wall, lung cell apoptosis, right ventricle wall thickness and area, higher endothelial growth factor and insulin-like growth factor mRNA expressions in lung tissue, and reduced platelet-derived growth factor, transforming growth factor-beta, and caspase-3 expressions. In conclusion, BMDMC therapy was effective at modulating the inflammatory and remodeling processes in the present model of elastase-induced emphysema. (c) 2012 Elsevier B.V. All rights reserved.
Resumo:
Aerobic conditioning (AC) performed either during or after sensitization reduces allergic inflammation in mice; however, the effects of AC performed before and during allergic sensitization on airway inflammation are unknown. Mice were divided into Control, AC, OVA, and AC + OVA groups. Mice were trained in a treadmill followed by either ovalbumin (OVA) sensitization or saline administration. Peribronchial inflammation, OVA-specific IgE and IgG1 titers, the expression of Th1 and Th2 cytokines, and airway remodeling were evaluated, as well as the expression of Eotaxin, RANTES, ICAM-1, VCAM-1, TGF-beta and VEGF. Aerobic conditioning performed before and during allergic sensitization displayed an inhibitory effect on the OVA-induced migration of eosinophils and lymphocytes to the airways, a reduction of IgE and IgG1 titers and an inhibition of the expression of Th2 cytokines. The AC + OVA group also demonstrated reduced expression of ICAM-1, VCAM-1, RANTES, TGF-beta and VEGF, as well as decreased airway remodeling (p < 0.05). The effects of AC before and during the sensitization process inhibit allergic airway inflammation and reduce the production of Th2 cytokines and allergen-specific IgE and IgG1.
Resumo:
Objective: To investigate the significance of cellular immune markers, as well as that of collagen and elastic components of the extracellular matrix, within granulomatous structures in biopsies of patients with pulmonary or extrapulmonary sarcoidosis. Methods: We carried out qualitative and quantitative evaluations of inflammatory cells, collagen fibers, and elastic fibers in granulomatous structures in surgical biopsies of 40 patients with pulmonary and extrapulmonary sarcoidosis using histomorphometry, immunohistochemistry, picrosirius red staining, and Weigert's resorcin-fuchsin staining. Results: The extrapulmonary tissue biopsies presented significantly higher densities of lymphocytes, macrophages, and neutrophils than did the lung tissue biopsies. Pulmonary granulomas showed a significantly higher number of collagen fibers and a lower density of elastic fibers than did extrapulmonary granulomas. The amount of macrophages in the lung samples correlated with FVC (p < 0.05), whereas the amount of CD3+, CD4+, and CD8+ lymphocytes correlated with the FEV1/FVC ratio and VC. There were inverse correlations between TLC and the CD1a+ cell count (p < 0.05), as well as between DLCO and collagen/elastic fiber density (r = -0.90; p = 0.04). Conclusions: Immunophenotyping and remodeling both showed differences between pulmonary and extrapulmonary sarcoidosis in terms of the characteristics of the biopsy samples. These differences correlated with the clinical and spirometric data obtained for the patients, suggesting that two different pathways are involved in the mechanism of antigen clearance, which was more effective in the lungs and lymph nodes.
Resumo:
de Araujo CC, Silva JD, Samary CS, Guimaraes IH, Marques PS, Oliveira GP, do Carmo LGRR, Goldenberg RC, Bakker-Abreu I, Diaz BL, Rocha NN, Capelozzi VL, Pelosi P, Rocco PRM. Regular and moderate exercise before experimental sepsis reduces the risk of lung and distal organ injury. J Appl Physiol 112: 1206-1214, 2012. First published January 19, 2012; doi:10.1152/japplphysiol.01061.2011.-Physical activity modulates inflammation and immune response in both normal and pathologic conditions. We investigated whether regular and moderate exercise before the induction of experimental sepsis reduces the risk of lung and distal organ injury and survival. One hundred twenty-four BALB/c mice were randomly assigned to two groups: sedentary (S) and trained (T). Animals in T group ran on a motorized treadmill, at moderate intensity, 5% grade, 30 min/day, 3 times a week for 8 wk. Cardiac adaptation to exercise was evaluated using echocardiography. Systolic volume and left ventricular mass were increased in T compared with S group. Both T and S groups were further randomized either to sepsis induced by cecal ligation and puncture surgery (CLP) or sham operation (control). After 24 h, lung mechanics and histology, the degree of cell apoptosis in lung, heart, kidney, liver, and small intestine villi, and interleukin (IL)-6, KC (IL-8 murine functional homolog), IL-1 beta, IL-10, and number of cells in bronchoalveolar lavage (BALF) and peritoneal lavage (PLF) fluids as well as plasma were measured. In CLP, T compared with S groups showed: 1) improvement in survival; 2) reduced lung static elastance, alveolar collapse, collagen and elastic fiber content, number of neutrophils in BALF, PLF, and plasma, as well as lung and distal organ cell apoptosis; and 3) increased IL-10 in BALF and plasma, with reduced IL-6, KC, and IL-1 beta in PLF. In conclusion, regular and moderate exercise before the induction of sepsis reduced the risk of lung and distal organ damage, thus increasing survival.
Resumo:
Background and objectives: Longitudinal, prospective, randomized, blinded Trial to assess the influence of pleural drain (non-toxic PVC) site of insertion on lung function and postoperative pain of patients undergoing coronary artery bypass grafting in the first three days post-surgery and immediately after chest tube removal. Method: Thirty six patients scheduled for elective myocardial revascularization with cardiopulmonary bypass (CPB) were randomly allocated into two groups: SX group (subxiphoid) and IC group (intercostal drain). Spirometry, arterial blood gases, and pain tests were recorded. Results: Thirty one patients were selected, 16 in SX group and 15 in IC group. Postoperative (PO) spirometric values were higher in SX than in IC group (p < 0.05), showing less influence of pleural drain location on breathing. PaO2 on the second PO increased significantly in SX group compared with IC group (p < 0.0188). The intensity of pain before and after spirometry was lower in SX group than in IC group (p < 0.005). Spirometric values were significantly increased in both groups after chest tube removal. Conclusion: Drain with insertion in the subxiphoid region causes less change in lung function and discomfort, allowing better recovery of respiratory parameters.
Resumo:
Despite significant advances in the care of critically ill patients, acute lung injury continues to be a complex problem with high mortality. The present study was designed to characterize early lipopolysaccharide (LPS)-induced pulmonary injury and small interfering RNA targeting focal adhesion kinase (FAK) as a possible therapeutic tool in the septic lung remodeling process. Male Wistar rats were assigned into endotoxemic group and control group. Total collagen deposition was performed 8, 16, and 24 h after LPS injection. Focal adhesion kinase expression, interstitial and vascular collagen deposition, and pulmonary mechanics were analyzed at 24 h. Intravenous injection of small interfering RNA targeting FAK was used to silence expression of the kinase in pulmonary tissue. Focal adhesion kinase, total collagen deposition, and pulmonary mechanics showed increased in LPS group. Types I, III, and V collagen showed increase in pulmonary parenchyma, but only type V increased in vessels 24 h after LPS injection. Focal adhesion kinase silencing prevented lung remodeling in pulmonary parenchyma at 24 h. In conclusion, LPS induced a precocious and important lung remodeling. There was fibrotic response in the lung characterized by increased amount in total and specific-type collagen. These data may explain the frequent clinical presentation during sepsis of reduced lung compliance, oxygen diffusion, and pulmonary hypertension. The fact that FAK silencing was protective against lung collagen deposition underscores the therapeutic potential of FAK targeting by small interfering RNA.
Resumo:
Borges JB, Suarez-Sipmann F, Bohm SH, Tusman G, Melo A, Maripuu E, Sandstrom M, Park M, Costa EL, Hedenstierna G, Amato M. Regional lung perfusion estimated by electrical impedance tomography in a piglet model of lung collapse. J Appl Physiol 112: 225-236, 2012. First published September 29, 2011; doi: 10.1152/japplphysiol.01090.2010.-The assessment of the regional match between alveolar ventilation and perfusion in critically ill patients requires simultaneous measurements of both parameters. Ideally, assessment of lung perfusion should be performed in real-time with an imaging technology that provides, through fast acquisition of sequential images, information about the regional dynamics or regional kinetics of an appropriate tracer. We present a novel electrical impedance tomography (EIT)-based method that quantitatively estimates regional lung perfusion based on first-pass kinetics of a bolus of hypertonic saline contrast. Pulmonary blood flow was measured in six piglets during control and unilateral or bilateral lung collapse conditions. The first-pass kinetics method showed good agreement with the estimates obtained by single-photon-emission computerized tomography (SPECT). The mean difference (SPECT minus EIT) between fractional blood flow to lung areas suffering atelectasis was -0.6%, with a SD of 2.9%. This method outperformed the estimates of lung perfusion based on impedance pulsatility. In conclusion, we describe a novel method based on EIT for estimating regional lung perfusion at the bedside. In both healthy and injured lung conditions, the distribution of pulmonary blood flow as assessed by EIT agreed well with the one obtained by SPECT. The method proposed in this study has the potential to contribute to a better understanding of the behavior of regional perfusion under different lung and therapeutic conditions.
Resumo:
IL-4 produced by Th2 cells can block cytokine production by Th1 cells, and Th1 IFN-gamma is known to counterregulate Th2 immune response, inhibiting allergic eosinophilia. As intrauterine undernutrition can attenuate lung inflammation, we investigated the influence of intrauterine undernourishment on the Th1/Th2 cytokine balance and allergic lung inflammation. Intrauterine undernourished offspring were obtained from dams fed 50% of the nourished diet of their counterparts and were immunized at 9 weeks of age. We evaluated the cell counts and cytokine protein expression in the bronchoalveolar lavage, mucus production and collagen deposition, and cytokine gene expression and transcription factors in lung tissue 21 days after ovalbumin immunization. Intrauterine undernourishment significantly reduced inflammatory cell airway infiltration, mucus secretion and collagen deposition, in rats immunized and challenged. Intrauterine undernourished rats also exhibited an altered cytokine expression profile, including higher TNF-alpha and IL-1 beta expression and lower IL-6 expression than well-nourished rats following immunization and challenge. Furthermore, the intrauterine undernourished group showed reduced ratios of the IL-4/IFN-gamma and the transcription factors GATA-3/T-Bet after immunization and challenge. We suggest that the attenuated allergic lung inflammation observed in intrauterine undernourished rats is related to an altered Th1/Th2 cytokine balance resulting from a reduced GATA-3/T-bet ratio. Copyright (C) 2012 S. Karger AG, Basel
Resumo:
Background: Mechanisms linking behavioral stress and inflammation are poorly understood, mainly in distal lung tissue. Objective: We have investigated whether the forced swim stress (FS) could modulate lung tissue mechanics, iNOS, cytokines, oxidative stress activation, eosinophilic recruitment, and remodeling in guinea pigs (GP) with chronic pulmonary inflammation. Methods: The GP were exposed to ovalbumin or saline aerosols (2x/wk/4wks, OVA, and SAL). Twenty-four hours after the 4th inhalation, the GP were submitted to the FS protocol (5x/wk/2wks, SAL-S, and OVA-S). Seventy-two hours after the 7th inhalation, lung strips were cut and tissue resistance (Rt) and elastance (Et) were obtained (at baseline and after OVA and Ach challenge). Strips were submitted to histopathological evaluation. Results: The adrenals' weight, the serum cortisol, and the catecholamines were measured. There was an increase in IL-2, IL-5, IL-13, IFN-gamma, iNOS, 8-iso-PGF2 alpha, and in %Rt and %Et after Ach challenge in the SAL-S group compared to the SAL one. The OVA-S group has had an increase in %Rt and %Et after the OVA challenge, in %Et after the Ach and in IL-4, 8-iso-PGF2 alpha, and actin compared to the OVA. Adrenal weight and cortisol serum were increased in stressed animals compared to nonstressed ones, and the catecholamines were unaltered. Conclusion & clinical relevance: Repeated stress has increased distal lung constriction, which was associated with an increase of actin, IL-4, and 8-iso-PGF2 alpha levels. Stress has also induced an activation of iNOS, cytokines, and oxidative stress pathways.
Resumo:
Non-mechanised sugarcane harvesting preceded by burning exposes workers and the people of neighbouring towns to high concentrations of pollutants. This study was aimed to evaluate the respiratory symptoms, lung function and oxidative stress markers in sugarcane workers and the residents of Mendonca, an agricultural town in Brazil, during the non-harvesting and harvesting periods and to assess the population and individual exposures to fine particulate matter (PM2.5). Sugarcane workers and healthy volunteers were evaluated with two respiratory symptom questionnaires, spirometry, urinary 1-hydroxypyrene levels, and the measurement of antioxidant enzymes and plasma malonaldehyde during the non-harvesting and harvesting periods. The environmental assessment was determined from PM2.5 concentration. PM2.5 level increased from 8 mu g/m(3) during the non-harvesting period to 23.5 mu g/m(3) in the town and 61 mu g/m(3) on the plantations during the harvesting period. Wheezing, coughing, sneezing, and breathlessness increased significantly in both groups during the harvesting period, but more markedly in workers. A decrease in lung function and antioxidant enzyme activity was observed in both populations during harvesting; this decrease was greater among the sugarcane workers. The urinary 1-hydroxypyrene levels only increased in the sugarcane workers during the harvesting period. The malonaldehyde levels were elevated in both groups, with a higher increase observed in the workers. This research demonstrates the exposure of sugarcane workers and the inhabitants of a neighbouring town to high PM2.5 concentrations during the sugarcane harvest period. This exposure was higher among the sugarcane workers, as illustrated by both higher PM2.5 concentrations in the sugarcane fields and higher urinary 1-hydroxypyrene levels in the volunteers in this group. The higher incidence of respiratory symptoms, greater decrease in lung function and more marked elevation of oxidative stress markers among the sugarcane workers during the harvest confirms the greater effect magnitude in this population and a dose-dependent relationship between pollution and the observed effects. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Breathing moves volumes of electrically insulating air into and out of the lungs, producing conductivity changes which can be seen by electrical impedance tomography (EIT). It has thus been apparent, since the early days of EIT research, that imaging of ventilation could become a key clinical application of EIT. In this paper, we review the current state and future prospects for lung EIT, by a synthesis of the presentations of the authors at the 'special lung sessions' of the annual biomedical EIT conferences in 2009-2011. We argue that lung EIT research has arrived at an important transition. It is now clear that valid and reproducible physiological information is available from EIT lung images. We must now ask the question: How can these data be used to help improve patient outcomes? To answer this question, we develop a classification of possible clinical scenarios in which EIT could play an important role, and we identify clinical and experimental research programmes and engineering developments required to turn EIT into a clinically useful tool for lung monitoring.
Resumo:
Purpose: Two-millimeter punch biopsy is a swift and practical diagnostic tool in the outpatient setting. However, few studies have evaluated the efficacy of the method for diagnosis of malignant eyelid tumors. Methods: This was an observational study of patients with suspicion of malignant eyelid tumor attending the Ocular Plastic Surgery Center at Hospital das Clinicas, University of Sao Paulo School of Medicine. Following standard procedures, preoperative biopsies were taken with a 2-mm trephine and surgical excision was performed with safety margins, followed by reconstruction. Anatomopathologic analysis of the surgical specimen was used as gold standard to evaluate the accuracy of diagnosis by punch biopsy. Results: The study included 50 periocular tumors with suspicion of malignancy. The indicators of efficacy in the identification of malignancy by 2-mm punch biopsy were: sensitivity 88%, specificity 100%, positive predictive value 100%, and negative predictive value 64%. Accuracy was 90% for malignancy and 80% for histologic type. The. index of agreement between the diagnostic methods was 0.722 (p < 0.001). Conclusion: A positive result with 2-mm punch biopsy is a safe indication for surgical excision of the tumor, whereas a negative result does not necessarily imply benignity. In cases of high clinical suspicion, a second biopsy should be taken from a different part of the tumor to rule out malignancy. (Ophthal Plast Reconstr Surg 2012;28:282-285)
Resumo:
Foxp3(+)CD25(+)CD4(+) regulatory T cells are vital for peripheral tolerance and control of tissue inflammation. In this study, we characterized the phenotype and monitored the migration and activity of regulatory T cells present in the airways of allergic or tolerant mice after allergen challenge. To induce lung allergic inflammation, mice were sensitized twice with ovalbumin/aluminum hydroxide gel and challenged twice with intranasal ovalbumin. Tolerance was induced by oral administration of ovalbumin for 5 consecutive days prior to OVA sensitization and challenge. We detected regulatory T cells (Foxp3(+)CD25(+)CD4(+) T cells) in the airways of allergic and tolerant mice; however, the number of regulatory T cells was more than 40-fold higher in allergic mice than in tolerant mice. Lung regulatory T cells expressed an effector/memory phenotype (CCR4(high)CD62L(low)CD44(high)CD54(high)CD69(+)) that distinguished them from naive regulatory T cells (CCR4(int)CD62L(high)CD44(int)CD54(int)CD69(-)). These regulatory T cells efficiently suppressed pulmonary T-cell proliferation but not Th2 cytokine production.
Resumo:
Objective: To evaluate the diagnostic accuracy of bronchoscopy in patients with clinical or radiological suspicion of tuberculosis who were unable to produce sputum or with negative sputum smear microscopy results. Methods: A prospective cross-sectional study involving 286 patients under clinical or radiological suspicion of having pulmonary tuberculosis and submitted to bronchoscopy-BAL and transbronchial biopsy (TBB). The BAL specimens were submitted to direct testing and culture for AFB and fungi, whereas the TBB specimens were submitted to histopathological examination. Results: Of the 286 patients studied, 225 (79%) were diagnosed on the basis of bronchoscopic findings, as follows: pulmonary tuberculosis, in 127 (44%); nonspecific chronic inflammation, in 51 (18%); pneumocystis, fungal infections, or nocardiosis, in 20 (7%); bronchiolitis obliterans organizing pneumonia, alveolites, or pneumoconiosis, in 14 (5%); lung or metastatic neoplasms, in 7 (2%); and nontuberculous mycobacterium infections, in 6 (2%). For the diagnosis of tuberculosis, BAL showed a sensitivity and a specificity of 60% and 100%, respectively. Adding the TBB findings significantly increased this sensitivity (to 84%), as did adding the post-bronchoscopy sputum smear microscopy results (total sensitivity, 94%). Minor post-procedure complications occurred in 5.6% of the cases. Conclusions: Bronchoscopy is a reliable method for the diagnosis of pulmonary tuberculosis, with low complication rates. The combination of TBB and BAL increases the sensitivity of the method and facilitates the differential diagnosis with other diseases.
Resumo:
Asthma is an allergic lung disease can be modulated by drugs that modify the activity of central nervous system (CNS) such as amphetamine (AMPH). AMPH is a highly abused drug that exerts potent effects on behavior and immunity. In this study we investigated the mechanism involved in the effects of long-term AMPH treatment on the increased magnitude of allergic lung response. We evaluated mast cells degranulation, cytokines release, airways responsiveness and, expression of adhesion molecules. Male Wistar rats were treated with AMPH or vehicle (PBS) for 21 days and sensitized with ovalbumin (OVA) one week after the first injection of vehicle or AMPH. Fourteen days after the sensitization, the rats were challenged with an OVA aerosol, and 24 h later their parameters were analyzed. In allergic rats, the treatment with AMPH exacerbated the lung cell recruitment due increased expression of ICAM-1, PECAM-1 and Mac-1 in granulocytes and macrophages recovered from bronchoalveolar lavage. Elevated levels of IL-4, but decreased levels of IL-10 were also found in samples of lung explants after AMPH treatment. Conversely, the ex-vivo tracheal hyper-responsiveness to methacholine (MCh) was reduced by AMPH treatment, whereas the force contraction of tracheal segments due to in vitro antigen challenge remained unaltered. Our findings suggest that lung inflammation and airway hyper-responsiveness due to OVA challenge are under the distinct control of AMPH during long-term treatment. Our data strongly indicate that AMPH positively modulates allergic lung inflammation via the increase of ICAM-1, PECAM-1, Mac-1 and IL-4. AMPH also abrogates the release of the anti-inflammatory cytokine IL-10. (c) 2012 Elsevier B.V. All rights reserved.