59 resultados para Sry-related Gene


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The manifestation of cholelithiasis after bariatric surgery may depend on genetic factors related to lipid metabolism, including apolipoprotein E (APOE) and cholesteryl ester transfer protein (CETP) gene polymorphisms. We investigated the association between APOE HhaI and CETP TaqIB polymorphisms [PCR-RFLP] and occurrence of cholelithiasis over up to 8 months of follow-up after gastroplasty to Roux-en-Y gastric bypass in 220 patients distributed in Group 1 (G1) 114 with cholelithiasis postoperatively and Group 2 (G2) 106 without cholelithiasis, including biochemical and anthropometric profiles analyses. In our series, the allelic and genotypic distributions of CETP TaqIB and APOE HhaI polymorphisms were similar in both groups (P > 0.05). The subgroup analysis evidenced that 54% of the patients from G1, APOE*4 allele carriers compared with APOE*3/3 carriers, presented altered low-density lipoprotein cholesterol (LDL cholesterol) serum levels (P = 0.022) before bariatric surgery. The B1 allele for CETP was associated to more quickly elevation of HDL cholesterol levels just in individuals without cholelitiasis (P < 0.0001). The multivariate logistic regression analysis demonstrates correlation between APOE*4 allele, higher total cholesterol (TC) serum levels and prediposition to cholelitiasis in preoperative period. However, the presence of postoperative cholelithiasis was not associated with altered lipid profile. The CETP TaqIB and APOE HhaI polymorphisms do not seem to have association with gallstones in the late postoperative bariatric surgery, considering that these genetic variants do not differ subgroups of patients who are eligible to routine prophylactic cholecystectomy, at least in Brazilian population.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Susceptibility to acute lymphoblastic leukemia can be highly influenced by genetic polymorphisms in metabolizing enzyme genes of environmental carcinogens. This study aimed to evaluate the impact of the CYP3A5 and NAT2 metabolizing enzyme polymorphisms on the risk of childhood acute lymphoblastic leukemia. The analysis was conducted on 204 ALL patients and in 364 controls from a Brazilian population, using PCR-RFLP. The CYP3A5*3 polymorphic homozygous genotype was more frequent among ALL patients and the *3 allele variant was significantly associated with increased risk of childhood ALL (OR = 0.29; 95% CI, 0.14-0.60). The homozygous polymorphic genotype for the *6 allele variant was extremely rare and found in only two individuals. The heterozygous frequencies were similar for the ALL group and the control group. No significant differences were observed between the groups analyzed regarding NAT2 variant polymorphisms. None of the polymorphisms analyzed was related to treatment outcome. The results suggest that CYP3A5*3 polymorphism may play an important role in the risk of childhood ALL.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

SERA5 is regarded as a promising malaria vaccine candidate of the most virulent human malaria parasite Plasmodium falciparum. SERA5 is a 120 kDa abundantly expressed blood-stage protein containing a papain-like protease. Since substantial polymorphism in blood-stage vaccine candidates may potentially limit their efficacy, it is imperative to fully investigate polymorphism of the SERA5 gene (sera5). In this study, we performed evolutionary and population genetic analysis of sera5. The level of inter-species divergence (kS = 0.076) between P. falciparum and Plasmodium reichenowi, a closely related chimpanzee malaria parasite is comparable to that of housekeeping protein genes. A signature of purifying selection was detected in the proenzyme and enzyme domains. Analysis of 445 near full-length P. falciparum sera5 sequences from nine countries in Africa, Southeast Asia, Oceania and South America revealed extensive variations in the number of octamer repeat (OR) and serine repeat (SR) regions as well as substantial level of single nucleotide polymorphism (SNP) in non-repeat regions (2562 bp). Remarkably, a 14 amino acid sequence of SERA5 (amino acids 59-72) that is known to be the in vitro target of parasite growth inhibitory antibodies was found to be perfectly conserved in all 445 worldwide isolates of P. falciparum evaluated. Unlike other major vaccine target antigen genes such as merozoite surface protein-1, apical membrane antigen-1 or circumsporozoite protein, no strong evidence for positive selection was detected for SNPs in the non-repeat regions of sera5. A biased geographical distribution was observed in SNPs as well as in the haplotypes of the sera5 OR and SR regions. In Africa, OR- and SR-haplotypes with low frequency (<5%) and SNPs with minor allele frequency (<5%) were abundant and were mostly continent-specific. Consistently, significant genetic differentiation, assessed by the Wright's fixation index (FST) of inter-population variance in allele frequencies, was detected for SNPs and both OR- and SR-haplotypes among almost all parasite populations. The exception was parasite populations between Tanzania and Ghana, suggesting frequent gene flow in Africa. The present study points to the importance of investigating whether biased geographical distribution for SNPs and repeat variants in the OR and SR regions affect the reactivity of human serum antibodies to variants. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Noonan syndrome (NS) and Noonan-related disorders [cardio-facio-cutaneous (CFC), Costello, Noonan syndrome with multiple lentigines (NS-ML), and neurofibromatosis-Noonan syndromes (NFNS)] are a group of developmental disorders caused by mutations in genes of the RAS/MAPK pathway. Mutations in the KRAS gene account for only a small proportion of affected Noonan and CFC syndrome patients that present an intermediate phenotype between these two syndromes, with more frequent and severe intellectual disability in NS and less ectodermal involvement in CFC syndrome, as well as atypical clinical findings such as craniosynostosis. Recently, the first familial case with a novel KRAS mutation was described. We report on a second vertical transmission (a mother and two siblings) with a novel mutation (p.M72L), in which the proband has trigonocephaly and the affected mother and sister, prominent ectodermal involvement. Metopic suture involvement has not been described before, expanding the main different cranial sutures which can be affected in NS and KRAS gene mutations. The gene alteration found in the studied family is in close proximity to the one reported in the other familial case (close to the switch II region of the G-domain), suggesting that this specific region of the gene could have less severe effects on intellectual ability than the other KRAS gene mutations found in NS patients and be less likely to hamper reproductive fitness. (c) 2012 Wiley Periodicals, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Schistosoma mansoni is responsible for schistosomiasis, a parasitic disease that affects 200 million people worldwide. Molecular mechanisms of host-parasite interaction are complex and involve a crosstalk between host signals and parasite receptors. TGF-beta signaling pathway has been shown to play an important role in S. mansoni development and embryogenesis. In particular human (h) TGF-beta has been shown to bind to a S. mansoni receptor, transduce a signal that regulates the expression of a schistosome target gene. Here we describe 381 parasite genes whose expression levels are affected by in vitro treatment with hTGF-beta. Among these differentially expressed genes we highlight genes related to morphology, development and cell cycle that could be players of cytokine effects on the parasite. We confirm by qPCR the expression changes detected with microarrays for 5 out of 7 selected genes. We also highlight a set of non-coding RNAs transcribed from the same loci of protein-coding genes that are differentially expressed upon hTCF-beta treatment. These datasets offer potential targets to be explored in order to understand the molecular mechanisms behind the possible role of hTGF-beta effects on parasite biology. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In sugarcane fields, colonization of the stalk by opportunistic fungi usually occurs after the caterpillar Diatraea saccharalis attacks the sugarcane plant. Plants respond to insect attack by inducing and accumulating a large set of defense proteins. Two homologues of a barley wound-inducible protein (BARWIN), sugarcane wound-inducible proteins SUGARWIN1 and SUGARWIN2, have been identified in sugarcane by an in silico analysis. Antifungal properties have been described for a number of BARWIN homologues. We report that a SUGARWIN:green fluorescent protein fusion protein is located in the endoplasmic reticulum and in the extracellular space of sugarcane plants. The induction of sugarwin transcripts occurs in response to mechanical wounding, D. saccharalis damage, and methyl jasmonate treatment. The accumulation of transcripts is late induced and is restricted to the site of the wound. Although the transcripts of sugarwin genes were strongly increased following insect attack, the protein itself did not show any effect on insect development; rather, it altered fungal morphology, leading to the apoptosis of the germlings. These results suggest that, in the course of evolution, sugarwin-encoding genes were recruited by sugarcane due to their antipathogenic activity. We rationalize that sugarcane is able to induce sugarwin gene expression in response to D. saccharalis feeding as a concerted plant response to the anticipated invasion by the fungi that typically penetrate the plant stalk after insect damage.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Brazilian pine (Araucaria angustifolia (Bert) O. Ktze) is the only native conifer species with economic importance in Brazil. Recently, due to intensive exploitation Brazilian pine was included in the official list of endangered Brazilian plants, under the "vulnerable" category. Biotechnology tools like somatic embryogenesis (SE) are potentially useful for mass clonal propagation and ex situ conservation strategies of commercial and endangered plant species. In spite of that, numerous obstacles still hamper the full application of SE technology for a wider range of species, including Brazilian pine. To enhance somatic embryogenesis in Brazilian pine and to gain a better understanding of the molecular events associated with somatic embryo development, we analyzed the steady-state transcript levels of genes known to regulate somatic embryogenesis using semiquantitative reverse transcription polymerase chain reaction (sqRT-PCR). These genes included Argonaute (AaAGO), Cup-shaped cotyledon1 (AaCUC), wushel-related WOX (AaWOX), a S-locus lectin protein kinase (AaLecK), Scarecrow- like (AaSCR), Vicilin 7S (AaVIC), Leafy Cotyledon 1 (AaLEC), and a Reversible glycosylated polypeptide (AaRGP). Expression patterns of these selected genes were investigated in embryogenic cultures undergoing different stages of embryogenesis, and all the way to maturation. Up-regulation of AaAGO, AaCUC, AaWOX, AaLecK, and AaVIC was observed during transition of somatic embryos from stage I to stage II. During the maintenance phase of somatic embryogenesis, expression of AaAGO and AaSCR, but not AaRPG and AaLEC genes was influenced by presence/ absence of plant growth regulators, both auxins and cytokinins. The results presented here provide new insights on the molecular mechanisms responsible for somatic embryo formation, and how selected genes may be used as molecular markers for Brazilian pine embryogenesis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Insects are able to combat infection by initiating an efficient immune response that involves synthesizing antimicrobial peptides and a range of other defense molecules. These responses may be costly to the organism, resulting in it exploiting endogenous resources to maintain homeostasis or support defense to the detriment of other physiological needs. We used queenless worker bees on distinct dietary regimes that may alter hemolymph protein storage and ovary activation to investigate the physiological costs of infection with Serratia marcescens. The expression of the genes encoding the storage proteins vitellogenin and hexamerin 70a, the vitellogenin receptor, and vasa (which has a putative role in reproduction), was impaired in the infected bees. This impairment was mainly evident in the bees fed beebread, which caused significantly higher expression of these genes than did royal jelly or syrup, and this was confirmed at the vitellogenin and hexamerin 70a protein levels. Beebread was also the only diet that promoted ovary activation in the queenless bees, but this activation was significantly impaired by the infection. The expression of the genes encoding the storage proteins apolipophorins-I and -III and the lipophorin receptor was not altered by infection regardless the diet provided to the bees. Similarly, the storage of apolipophorin-I in the hemolymph was only slightly impaired by the infection, independently of the supplied diet. Taken together these results indicate that, infection demands a physiological cost from the transcription of specific protein storage-related genes and from the reproductive capacity. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The embryonic developmental block occurs at the 8-cell stage in cattle and is characterized by a lengthening of the cell cycle and an increased number of embryos that stop development. The maternal-embryonic transition arises at the same stage resulting in the transcription of many genes. Gene expression studies during this stage may contribute to the understanding of the physiological mechanisms involved in the maternal-embryonic transition. Herein we identified genes differentially expressed between embryos with high or low developmental competence to reach the blastocyst stage using differential display PCR. Embryos were analysed according to developmental kinetics: fast cleavage embryos showing 8 cells at 48 h post insemination (hpi) with high potential of development (F8), and embryos with slow cleavage presenting 4 cells at 48 hpi (54) and 8 cells at 90 hpi (S8), both with reduced rates of development to blastocyst. The fluorescence DDPCR method was applied and allowed the recovery of 176 differentially expressed bands with similar proportion between high and low development potential groups (52% to F8 and 48% in S4 and S8 groups). A total of 27 isolated fragments were cloned and sequenced, confirming the expected primer sequences and allowing the identification of 27 gene transcripts. PI3KCA and ITM2B were chosen for relative quantification of mRNA using real-time PCR and showed a kinetic and a time-related pattern of expression respectively. The observed results suggest the existence of two different embryonic genome activation mechanisms: fast-developing embryos activate genes related to embryonic development, and slow-developing embryos activate genes related to cellular survival and/or death.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Common bean, one of the most important legumes for human consumption, may have drastic reduction in yield due to anthracnose, a disease caused by the fungus Colletotrichum lindemuthianum. Rapid induction of the plant defense mechanisms is essential to establish an incompatible interaction with this pathogenic fungus. In this study, we evaluated spatial (leaves, epicotyls and hypocotyls) and temporal (24, 48, 72 and 96 hours after inoculation [HAI]) relative expression (RE) of 12 defense-related transcripts selected from previously developed ESTs libraries, during incompatible interaction between the resistant common bean genotype SEL 1308 and the avirulent anthracnose pathogen race 73, using real time quantitative RT-PCR (RT-qPCR) analysis. All selected transcripts, including the ones coding for pathogenesis-related (PR) proteins (PR1a, PR1b, PR2, and PR16a and PR16b) were differentially regulated upon pathogen inoculation. The expression levels of these transcripts were dependent on the tissue and time post inoculation. This study contributes to a better understanding of the kinetics of induced defenses against a fungal pathogen of common bean and may be used as a base line to study defenses against a broad range of pathogens including bacteria as well as non-host resistance. (C) 2012 Elsevier GmbH. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

HER-2-positive breast cancers frequently sustain elevated AKT/mTOR signaling, which has been associated with resistance to doxorubicin treatment. Here, we investigated whether rapamycin, an mTOR inhibitor, increased the sensitivity to doxorubicin therapy in two HER-2-overexpressing cell lines: C5.2, which was derived from the parental HB4a by transfection with HER-2 and SKBR3, which exhibits HER-2 amplification. The epithelial mammary cell line HB4a was also analyzed. The combined treatment using 20 nmol/L of rapamycin and 30 nmol/L of doxorubicin arrested HB4a and C5.2 cells in S to G(2)-M, whereas SKBR3 cells showed an increase in the G(0)-G(1) phase. Rapamycin increased the sensitivity to doxorubicin in HER-2-overexpressing cells by approximately 2-fold, suggesting that the combination displayed a more effective antiproliferative action. Gene expression profiling showed that these results might reflect alterations in genes involved in canonical pathways related to purine metabolism, oxidative phosphorylation, protein ubiquitination, and mitochondrial dysfunction. A set of 122 genes modulated by the combined treatment and specifically related to HER-2 overexpression was determined by finding genes commonly regulated in both C5.2 and SKBR3 that were not affected in HB4a cells. Network analysis of this particular set showed a smaller subgroup of genes in which coexpression pattern in HB4a cells was disrupted in C5.2 and SKBR3. Altogether, our data showed a subset of genes that might be more robust than individual markers in predicting the response of HER-2-overexpressing breast cancers to doxorubicin and rapamycin combination. Mol Cancer Ther; 11(2); 464-74. (C) 2011 AACR.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ocotea catharinensis is a basal angiosperm and an endangered tree species from the Brazilian Atlantic Rain Forest. Despite its economical and ecological importance, mass-propagation of this species is hampered by seldom-produced short-lived seeds, and in vitro propagation is challenged by frequently malformed somatic embryos. Therefore, O. catharinensis somatic embryos are also a good experimental material to study the physiological and molecular mechanisms underlying in vitro morphogenesis. In an ongoing effort to characterize genes expressed during somatic embryogenesis of O. catharinensis we have cloned two Ocotea WUSCHEL-related genes. According to our RT-PCR data, both genes were preferentially expressed in embryogenic cell aggregates. One of them, OcWUS, is a possible ortholog of the Arabidopsis WUSCHEL (WUS) gene, which codes for a homeodomain-containing protein involved in the specification and maintenance of the shoot apical meristem. We analyzed the expression patterns of OcWUS and OcWOX4 by RT-PCR, and OcWUS expression was also assessed by in situ hybridization. The expression patterns of OcWUS were very similar to those described for the Arabidopsis WUS. OcWUS transcripts were generally restricted to a small group of cells in the center of the putative shoot apical meristem of O. catharinensis somatic embryos. Perturbed expression of OcWUS might be related to abnormally formed somatic embryos of O. catharinensis obtained through tissue culture.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Introduction: The cytolysis mediated by granules is one of the most important effector functions of cytotoxic T lymphocytes and natural killer cells. Recently, three single nucleotide polymorphisms (SNPs) were identified at exons 2, 3, and 5 of the granzyme B gene, resulting in a haplotype in which three amino acids of mature protein Q48P88Y245 are changed to R48A88H245, which leads to loss of cytotoxic activity of the protein. In this study, we evaluated the frequency of these polymorphisms in Brazilian populations. Methods: We evaluated the frequency of these polymorphisms in Brazilian ethnic groups (white, Afro-Brazilian, and Asian) by sequencing these regions. Results: The allelic and genotypic frequencies of SNP 2364A/G at exon 2 in Afro-Brazilian individuals (42.3% and 17.3%) were significantly higher when compared with those in whites and Asians (p < 0.0001 and p = 0.0007, respectively). The polymorphisms 2933C/G and 4243C/T also were more frequent in Afro-Brazilians but without any significant difference regarding the other groups. The Afro-Brazilian group presented greater diversity of haplotypes, and the RAH haplotype seemed to be more frequent in this group (25%), followed by the whites (20.7%) and by the Asians (11.9%), similar to the frequency presented in the literature. Conclusions: There is a higher frequency of polymorphisms in Afro-Brazilians, and the RAH haplotype was more frequent in these individuals. We believe that further studies should aim to investigate the correlation of this haplotype with diseases related to immunity mediated by cytotoxic lymphocytes, and if this correlation is confirmed, novel treatment strategies might be elaborated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract Background Mycelium-to-yeast transition in the human host is essential for pathogenicity by the fungus Paracoccidioides brasiliensis and both cell types are therefore critical to the establishment of paracoccidioidomycosis (PCM), a systemic mycosis endemic to Latin America. The infected population is of about 10 million individuals, 2% of whom will eventually develop the disease. Previously, transcriptome analysis of mycelium and yeast cells resulted in the assembly of 6,022 sequence groups. Gene expression analysis, using both in silico EST subtraction and cDNA microarray, revealed genes that were differential to yeast or mycelium, and we discussed those involved in sugar metabolism. To advance our understanding of molecular mechanisms of dimorphic transition, we performed an extended analysis of gene expression profiles using the methods mentioned above. Results In this work, continuous data mining revealed 66 new differentially expressed sequences that were MIPS(Munich Information Center for Protein Sequences)-categorised according to the cellular process in which they are presumably involved. Two well represented classes were chosen for further analysis: (i) control of cell organisation – cell wall, membrane and cytoskeleton, whose representatives were hex (encoding for a hexagonal peroxisome protein), bgl (encoding for a 1,3-β-glucosidase) in mycelium cells; and ags (an α-1,3-glucan synthase), cda (a chitin deacetylase) and vrp (a verprolin) in yeast cells; (ii) ion metabolism and transport – two genes putatively implicated in ion transport were confirmed to be highly expressed in mycelium cells – isc and ktp, respectively an iron-sulphur cluster-like protein and a cation transporter; and a putative P-type cation pump (pct) in yeast. Also, several enzymes from the cysteine de novo biosynthesis pathway were shown to be up regulated in the yeast form, including ATP sulphurylase, APS kinase and also PAPS reductase. Conclusion Taken together, these data show that several genes involved in cell organisation and ion metabolism/transport are expressed differentially along dimorphic transition. Hyper expression in yeast of the enzymes of sulphur metabolism reinforced that this metabolic pathway could be important for this process. Understanding these changes by functional analysis of such genes may lead to a better understanding of the infective process, thus providing new targets and strategies to control PCM.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract Background Sugarcane is an increasingly economically and environmentally important C4 grass, used for the production of sugar and bioethanol, a low-carbon emission fuel. Sugarcane originated from crosses of Saccharum species and is noted for its unique capacity to accumulate high amounts of sucrose in its stems. Environmental stresses limit enormously sugarcane productivity worldwide. To investigate transcriptome changes in response to environmental inputs that alter yield we used cDNA microarrays to profile expression of 1,545 genes in plants submitted to drought, phosphate starvation, herbivory and N2-fixing endophytic bacteria. We also investigated the response to phytohormones (abscisic acid and methyl jasmonate). The arrayed elements correspond mostly to genes involved in signal transduction, hormone biosynthesis, transcription factors, novel genes and genes corresponding to unknown proteins. Results Adopting an outliers searching method 179 genes with strikingly different expression levels were identified as differentially expressed in at least one of the treatments analysed. Self Organizing Maps were used to cluster the expression profiles of 695 genes that showed a highly correlated expression pattern among replicates. The expression data for 22 genes was evaluated for 36 experimental data points by quantitative RT-PCR indicating a validation rate of 80.5% using three biological experimental replicates. The SUCAST Database was created that provides public access to the data described in this work, linked to tissue expression profiling and the SUCAST gene category and sequence analysis. The SUCAST database also includes a categorization of the sugarcane kinome based on a phylogenetic grouping that included 182 undefined kinases. Conclusion An extensive study on the sugarcane transcriptome was performed. Sugarcane genes responsive to phytohormones and to challenges sugarcane commonly deals with in the field were identified. Additionally, the protein kinases were annotated based on a phylogenetic approach. The experimental design and statistical analysis applied proved robust to unravel genes associated with a diverse array of conditions attributing novel functions to previously unknown or undefined genes. The data consolidated in the SUCAST database resource can guide further studies and be useful for the development of improved sugarcane varieties.