36 resultados para San Jacinto, Battle of, Tex., 1836.
Resumo:
The solid solution based on Nb5Si3 (Cr5B3 structure type, D8(l), tl32, 14/mcm, No140, a=6.5767 angstrom, c=11.8967 angstrom) in the Nb-Si-B system was studied from the structural and thermodynamic point of view both experimentally and by ab initio calculations. Rietveld refinement of powder X-ray synchrotron data allowed to determine the boron to silicon substitution mechanism and the structural parameters. Ab initio calculations of different ordered compounds and selected disordered alloys allowed to obtain in addition to the enthalpy of formation of the solution, substitution mechanism and structural parameters which are in excellent agreement with the experimental data. The stability of the phase is discussed. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
We introduce a new family of twisted generalized Weyl algebras, called multiparameter twisted Weyl algebras, for which we parametrize all simple quotients of a certain kind. Both Jordan's simple localization of the multiparameter quantized Weyl algebra and Hayashi's q-analog of the Weyl algebra are special cases of this construction. We classify all simple weight modules over any multiparameter twisted Weyl algebra. Extending results by Benkart and Ondrus, we also describe all Whittaker pairs up to isomorphism over a class of twisted generalized Weyl algebras which includes the multiparameter twisted Weyl algebras. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
We prove that any two Poisson dependent elements in a free Poisson algebra and a free Poisson field of characteristic zero are algebraically dependent, thus answering positively a question from Makar-Limanov and Umirbaev (2007) [8]. We apply this result to give a new proof of the tameness of automorphisms for free Poisson algebras of rank two (see Makar-Limanov and Umirbaev (2011) [9], Makar-Limanov et al. (2009) [10]). (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
A specific separated-local-field NMR experiment, dubbed Dipolar-Chemical-Shift Correlation (DIPSHIFT) is frequently used to study molecular motions by probing reorientations through the changes in XH dipolar coupling and T-2. In systems where the coupling is weak or the reorientation angle is small, a recoupled variant of the DIPSHIFT experiment is applied, where the effective dipolar coupling is amplified by a REDOR-like pi-pulse train. However, a previously described constant-time variant of this experiment is not sensitive to the motion-induced T-2 effect, which precludes the observation of motions over a large range of rates ranging from hundreds of Hz to around a MHz. We present a DIPSHIFT implementation which amplifies the dipolar couplings and is still sensitive to T-2 effects. Spin dynamics simulations, analytical calculations and experiments demonstrate the sensitivity of the technique to molecular motions, and suggest the best experimental conditions to avoid imperfections. Furthermore, an in-depth theoretical analysis of the interplay of REDOR-like recoupling and proton decoupling based on Average-Hamiltonian Theory was performed, which allowed explaining the origin of many artifacts found in literature data. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
We study the action of a weighted Fourier–Laplace transform on the functions in the reproducing kernel Hilbert space (RKHS) associated with a positive definite kernel on the sphere. After defining a notion of smoothness implied by the transform, we show that smoothness of the kernel implies the same smoothness for the generating elements (spherical harmonics) in the Mercer expansion of the kernel. We prove a reproducing property for the weighted Fourier–Laplace transform of the functions in the RKHS and embed the RKHS into spaces of smooth functions. Some relevant properties of the embedding are considered, including compactness and boundedness. The approach taken in the paper includes two important notions of differentiability characterized by weighted Fourier–Laplace transforms: fractional derivatives and Laplace–Beltrami derivatives.
Resumo:
Hierarchical multi-label classification is a complex classification task where the classes involved in the problem are hierarchically structured and each example may simultaneously belong to more than one class in each hierarchical level. In this paper, we extend our previous works, where we investigated a new local-based classification method that incrementally trains a multi-layer perceptron for each level of the classification hierarchy. Predictions made by a neural network in a given level are used as inputs to the neural network responsible for the prediction in the next level. We compare the proposed method with one state-of-the-art decision-tree induction method and two decision-tree induction methods, using several hierarchical multi-label classification datasets. We perform a thorough experimental analysis, showing that our method obtains competitive results to a robust global method regarding both precision and recall evaluation measures.