54 resultados para LACTIC-ACIDOSIS
Resumo:
Metabolic studies are very important to improve quality of functional dairy products. For this purpose, the behaviors of pure cultures of Streptococcus thermophilus (St) and Lactobacillus rhamnosus (Lr) as well a co-culture of them (St-Lr) were investigated during skim milk fermentation, and the inulin effect as prebiotic was assessed. Lr was able to metabolize 6 g/100 g more galactose than St and St-Lr. Final lactic acid production by Lr was higher (9.8 g/L) compared to St (9.1 g/L) and St-Lr (9.1 g/L). Acetic acid concentration varied from 0.8 g/L (St-Lr) to 1.5 g/L (Lr) and that of ethanol from only 0.2 g/L (St-Lr) to 0.4 g/L (Lr), which suggests the occurrence in Lr of a NADH oxidase activity and citrate co-metabolization via pyruvate, both dissipating a part of the reducing power. Diacetyl and acetoin accumulated at the highest levels (18.4 and 0.8 mg/L, respectively) with St-Lr, which suggests possible synergistic interactions between these microorganisms as well as the Lr capability of co-metabolizing citrate in the presence of lactose. Inulin stimulated both biomass growth and levels of all end-products, as the likely result of fructose release from its partial hydrolysis and subsequent metabolization as an additional carbon and energy source. Crown Copyright (C) 2012 Published by Elsevier Ltd. All rights reserved.
Resumo:
To shed light on the interactions occurring in fermented milks when using co-cultures of Streptococcus thermophilus with Lactobacillus bulgaricus (StLb) or Lactobacillus acidophilus (StLa), a new co-metabolic model was proposed and checked either in the presence of Inulin as a prebiotic or not. For this purpose, the experimental data of concentrations of substrates and fermented products were utilized in balances of carbon, reduction degree and ATP. S. thermophilus exhibited always quicker growth compared to the other two microorganisms, while the percentage of lactose fermented to lactic acid, that of galactose metabolized, and the levels of diacetyl and acetoin formed strongly depended on the type of co-culture and the presence of inulin. The StLb co-culture led to higher acetoin and lower diacetyl levels compared to StLa, probably because of more reducing conditions or limited acetoin dehydrogenation. Inulin addition to StLa suppressed acetoin accumulation and hindered that of diacetyl, suggesting catabolite repression of alpha-acetolactate synthase expression in S. thermophilus. Both co-cultures showed the highest ATP requirements for biomass growth and maintenance at the beginning of fermentation, consistently with the high energy demand of enzyme induction during lag phase. Inulin reduced these requirements making biomass synthesis and maintenance less energy-consuming. Only a fraction of galactose was released from lactose, consistently with the galactose-positive phenotype of most dairy strains. The galactose fraction metabolized without inulin was about twice that in its presence, which suggests inhibition of the galactose transport system of S. thermophilus by fructose released from partial inulin hydrolysis. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Nisin is a promising alternative to chemical preservatives for use as a natural biopreservative in foods. This bacteriocin has also potential biomedical applications. Lactic acid bacteria are commonly cultivated in expensive standard complex media. We have evaluated the cell growth and nisin production of Lactococcus lactis in a low-cost natural medium consisting of diluted skimmed milk in a 2-L bioreactor. The assays were performed at 30 degrees C for 56 h, at varying agitation speeds and airflow rates: (1) 200 rpm (no airflow, and airflow at 0.5, 1.0 and 2.0 L/min); (2) 100 rpm (no airflow, and airflow at 0.5 L/min). Nisin activity was evaluated using agar diffusion assays. The highest nisin concentration, 49.88 mg/L (3.3 log AU/mL or 1,995.29 AU/mL), was obtained at 16 h of culture, 200 rpm and no airflow (k(L)a = 5.29 x 10(-3)). These results show that a cultivation medium composed of diluted skimmed milk supports cell growth to facilitate nisin biosynthesis.
Resumo:
The aim of this study was to evaluate the potential application of biodegradable nanoparticles containing a photosensitizer in photodynamic therapy. The poly (D,L lactic-co-glycolic acid) nanoparticles were studied by steady-state techniques, time-resolved fluorescence, and laser flash photolysis. The external morphology of the nanoparticles was established by scanning electron microscopy, and the biological activity was evaluated by in vitro cell culture by 3-(4,5 dimethylthiazol-2,5 biphenyl) tetrazolium bromide assay. The particles were spherical in shape exhibiting a 435 nm diameter with a low tendency to aggregate. The loading efficiency was 77%. The phthalocyanine-loaded-nanoparticles maintained their photophysical behavior after encapsulation. The cellular viability was determined, obtaining 70% of cellular death. All the performed physical-chemical, photophysical, and photobiological measurements indicated that the phthalocyanine-loaded-nanoparticles are a promising drug delivery system for photodynamic therapy and photoprocesses. (C) 2012 Laser Institute of America.
Resumo:
Antitumor activities have been described in selol, a hydrophobic mixture of molecules containing selenium in their structure, and also in maghemite magnetic nanoparticles (MNPs). Both selol and MNPs were co-encapsulated within poly(lactic-co-glycolic acid) (PLGA) nanocapsules for therapeutic purposes. The PLGA-nanocapsules loaded with MNPs and selol were labeled MSE-NC and characterized by transmission and scanning electron microscopy, electrophoretic mobility, photon correlation spectroscopy, presenting a monodisperse profile, and positive charge. The antitumor effect of MSE-NC was evaluated using normal (MCF-10A) and neoplastic (4T1 and MCF-7) breast cell lines. Nanocapsules containing only MNPs or selol were used as control. MTT assay showed that the cytotoxicity induced by MSE-NC was dose and time dependent. Normal cells were less affected than tumor cells. Cell death occurred mainly by apoptosis. Further exposure of MSE-NC treated neoplastic breast cells to an alternating magnetic field increased the antitumor effect of MSE-NC. It was concluded that selol-loaded magnetic PLGA-nanocapsules (MSE-NC) represent an effective magnetic material platform to promote magnetohyperthermia and thus a potential system for antitumor therapy.
Resumo:
The effect of the addition of passion fruit peel powder (PFPP) on the fermentation kinetics and texture parameters, post-acidification and bacteria counts of probiotic yoghurts made with two milk types were evaluated during 28 days of storage at 4 degrees C. Milks were fermented by Streptococcus thermophilus and Lactobacillus delbrueckii subsp. bulgaricus (CY340), and one strain of probiotic bacteria: Lactobacillus acidophilus (L10 and NCFM), Bifidobacterium animalis subsp. lactis (8104 and HN019). The addition of PFPP reduced significantly fermentation time of skim milk co-fermented by the strains L10, NCFM and HN019. At the end of 28-day shelf-life, counts of B. lactis Bl04 were about 1 Log CFU mL(-1) higher in whole yoghurt fermented with PFPP regarding its control but, in general, the addition of PFPP had less influence on counts than the milk type itself. The titratable acidity in yoghurts with PFPP was significantly higher than in their respective controls, and in skim yoghurts higher than in the whole ones. The PFPP increased firmness, consistency (except for the NCFM strain of L acidophilus) and cohesiveness of all skim yoghurts. The results point out the suitability of using passion fruit by-product in the formulation of both skim and whole probiotic yoghurts. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
We investigated the effect of increased glucose oxidase concentration as a technological option to decrease oxidative stress during the processing of probiotic yogurts. Probiotic yogurts were produced with increased concentrations of glucose oxidase (0, 250, 500, 750, or 1,000 mg/kg) and submitted to physicochemical and microbiological analysis at 1, 15, and 30 d of refrigerated storage. Higher concentrations of glucose oxidase (750 and 1,000 mg/kg) and a longer storage time were found to have an influence on the characteristics of the probiotic yogurt, contributing to more extensive post-acidification, an increase in the dissolved oxygen level, and higher proteolysis. In addition, increased production of aroma compounds (diacetyl and acetaldehyde) and organic acids (mainly lactic acid) and a decrease in the probiotic bacteria count were reported. The use of glucose oxidase was a feasible option to minimize oxidative stress in probiotic yogurts. However, supplementation with excessive amounts of the enzyme may be ineffective, because insufficient substrate (glucose) is present for its action. Consumer tests should be performed to evaluate changes in the sensory attributes of the probiotic yogurts with increased supplementation of glucose oxidase. In addition, packaging systems with different permeability to oxygen should be evaluated.
Resumo:
Contents Among the modifications that occur during the neonatal period, pulmonary development is the most critical. The neonate's lungs must be able to perform adequate gas exchange, which was previously accomplished by the placenta. Neonatal respiratory distress syndrome is defined as insufficient surfactant production or pulmonary structural immaturity and is specifically relevant to preterm newborns. Prenatal maternal betamethasone treatment of bitches at 55days of gestation leads to structural changes in the neonatal lung parenchyma and consequently an improvement in the preterm neonatal respiratory condition, but not to an increase in pulmonary surfactant production. Parturition represents an important challenge to neonatal adaptation, as the uterine and abdominal contractions during labour provoke intermittent hypoxia. Immediately after birth, puppies present venous mixed acidosis (low blood pH and high dioxide carbon saturation) and low but satisfactory Apgar scores. Thus, the combination of physiological hypoxia during birth and the initial effort of filling the pulmonary alveoli with oxygen results in anaerobiosis. As a neonatal adaptation follow-up, the Apgar analysis indicates a tachypnoea response after 1h of life, which leads to a shift in the blood acidbase status to metabolic acidosis. One hour is sufficient for canine neonates to achieve an ideal Apgar score; however, a haemogasometric imbalance persists. Dystocia promotes a long-lasting bradycardia effect, slows down Apgar score progression and aggravates metabolic acidosis and stress. The latest data reinforce the need to accurately intervene during canine parturition and offer adequate medical treatment to puppies that underwent a pathological labour.
Resumo:
The aim of this study was to evaluate the blood gas profile of experimentally copper-poisoned sheep (in the pre-hemolytic, hemolytic and post-hemolytic phases) that have been treated or not treated with ammonium tetrathiomolybdate. Ten lambs of the Santa Ines breed were divided into two groups: control and ATTM (treated (ammonium tetrathiomolibydate). The animals were submitted to increasing doses of copper sulfate until macroscopic hemoglobinuria was detected. All of the control animals from died within four days of hemolytic crisis, and one sheep from ATTM died during the treatment. There was no difference in blood gas parameters between experimental groups. Higher values of pCO(2) were observed during the hemolytic crisis (HC) in both groups. The control group had higher mean values of hCO(3) in the times HC and 2 days after hemolytic crisis (dA) when compared with the time 15 before hemolytic crises (dB). The sheep that were treated with ATTM presented lower values of hCO(3) at 7dB and higher levels at the HC. The control and ATTM groups exhibited higher values of BE during the HC. Poisoning resulted in disorder in the acid-base equilibrium, characterized by metabolic alkalosis and respiratory acidosis. Treatment with ATTM was able to reverse the changes in acid-base balance in copper poisoning sheep.
Resumo:
The incorporation of the curcumin into poly(lactic-co-glycolic)acid (PLGA) nanospheres by the nanoprecipitation technique, the characterization of the nanoparticles and the schistosomicidal activity of the curcumin-loaded into PLGA nanospheres were reported. The incorporation process occurred with high efficiency and the images of field-emission scanning electron microscopy (FESEM) revealed the production of spherically shaped particles. According to the dynamic light scattering measurements, the particles are nanometric and monodisperse. The curcumin-loaded PLGA nanoparticles (50 and 100 mu M) caused the death of all worms and a separation between 50% and 100% of Schistosoma mansoni couples at concentrations from 30 mu M. Moreover, the curcumin-loaded PLGA nanoparticles also decreased the motor activity and caused partial alterations in the tegument of adult worms. This study marks the first time that schistosomicidal activity has been reported for curcumin-loaded PLGA nanoparticles.
Resumo:
Capability to produce antilisterial bacteriocins by lactic acid bacteria (LAB) can be explored by the food industry as a tool to increase the safety of foods. Furthermore, probiotic activity of bacteriogenic LAB brings extra advantages to these strains, as they can confer health benefits to the consumer. Beneficial effects depend on the ability of the probiotic strains to maintain viability in the food during shelf-life and to survive the natural defenses of the host and multiply in the gastrointestinal tract (GIT). This study evaluated the probiotic potential of a bacteriocinogenic Lactobacillus plantarum strain (Lb. plantarum ST16Pa) isolated from papaya fruit and studied the effect of encapsulation in alginate on survival in conditions simulating the human GIT. Good growth of Lb. plantarum ST16Pa was recorded in MRS broth with initial pH values between 5.0 and 9.0 and good capability to survive in pH 4.0, 11.0 and 13.0. Lb. plantarum ST16Pa grew well in the presence of oxbile at concentrations ranging from 0.2 to 3.0%. The level of auto-aggregation was 37%, and various degrees of co-aggregation were observed with different strains of Lb. plantarum, Enterococcus spp., Lb. sakei and Listeria, which are important features for probiotic activity. Growth was affected negatively by several medicaments used for human therapy, mainly anti-inflammatory drugs and antibiotics. Adhesion to Caco-2 cells was within the range reported for other probiotic strains, and PCR analysis indicated that the strain harbored the adhesion genes mapA, mub and EF-Tu. Encapsulation in 2, 3 and 4% alginate protected the cells from exposure to 1 or 2% oxbile added to MRS broth. Studies in a model simulating the transit through the GIT indicated that encapsulated cells were protected from the acidic conditions in the stomach but were less resistant when in conditions simulating the duodenum, jejunum, ileum and first section of the colon. To our knowledge, this is the first report on a bacteriocinogenic LAB isolated from papaya that presents application in food biopreservation and may be beneficial to the consumer health due to its potential probiotic characteristics.
Resumo:
Introduction: The lack of reference values of anthropometric, performance, biochemical, hematological, hormonal and psychological parameters is an important limitation in the investigations with soccer players. Objective: To elaborate percentile tables to be used as comparison reference for further studies. Methods: 82 professional soccer players were evaluated approximately 30 days after the beginning of the main competition played by their teams. On the first day of evaluation, fast blood samples were collected for measurement of hematological parameters (i.e. erythrocytes, hemoglobin, hematocrit, mean corpuscular volume - MCV, mean corpuscular hemoglobin - MCH, mean corpuscular hemoglobin concentration - MCHC, leukocytes, eosinophils, lymphocytes, monocytes and platelets) and of concentrations of adrenaline, cortisol, creatine kinase, creatinine, norepinephrine, testosterone and urea. Subsequently, the soccer players had their anthropometric characteristics and psychological parameters assessed. In addition, the evaluation of the lactic anaerobic system efficiency was performed on a 400-m track. On the second day, both the alactic anaerobic and aerobic system efficiency was measured. Results: The percentile distribution (P-0, P-15, P-30, P-50, P-70, P-85 e P-100) was used to present the results. Conclusion: The elaboration of the percentile tables can be used as comparison reference for further studies.
Resumo:
Bee venom (BV) allergy is potentially dangerous for allergic individuals because a single bee sting may induce an anaphylactic reaction, eventually leading to death. Currently, venom immunotherapy (VIT) is the only treatment with long-lasting effect for this kind of allergy and its efficiency has been recognized worldwide. This therapy consists of subcutaneous injections of gradually increasing doses of the allergen. This causes patient lack of compliance due to a long time of treatment with a total of 30-80 injections administered over years. In this article we deal with the characterization of different MS-PLGA formulations containing BV proteins for VIT. The PLGA microspheres containing BV represent a strategy to replace the multiple injections, because they can control the solute release. Physical and biochemical methods were used to analyze and characterize their preparation. Microspheres with encapsulation efficiencies of 49-75% were obtained with a BV triphasic release profile. Among them, the MS-PLGA 34 kDa-COOH showed to be best for VIT because they presented a low initial burst (20%) and a slow BV release during lag phase. Furthermore, few conformational changes were observed in the released BV. Above all, the BV remained immunologically recognizable, which means that they could continuously stimulate the immune system. Those microspheres containing BV could replace sequential injections of traditional VIT with the remarkable advantage of reduced number of injections. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
This study correlated the composition of the spoilage bacterial flora with the main gaseous and volatile organic compounds (VOCs) found in the package headspace of spoiled, chilled, vacuum-packed meat. Fifteen chilled, vacuum-packed beef samples, suffering from blown pack spoilage, were studied using 16S rRNA clone sequencing. More than 50% of the bacteria were identified as lactic acid bacteria (LAB), followed by clostridia and enterobacteria. Fifty-one volatile compounds were detected in the spoiled samples. Although the major spoilage compounds were identified as alcohols and aldehydes, CO2 was identified as the major gas in the spoiled samples by headspace technique. Different species of bacteria contribute to different volatile compounds during meat spoilage. LAB played an important role in blown pack deterioration of the Brazilian beef studied.
Resumo:
This study aimed to demonstrate that microspheres, used as delivery vehicle of DNA-Hsp65/TDM [plasmid DNA encoding heat shock protein 65 (Hsp65) coencapsulated with trehalose dimycolate (TDM) into PLGA microspheres], are widely spread among several organs after intramuscular administration in BALB/c mice. In general, we showed that these particles were phagocytosed by antigen presenting cells, such as macrophages and dendritic cells. Besides, it was demonstrated herein that draining lymph node cells presented a significant increase in the number of cells expressing costimulatory molecules (CD80 and CD86) and MHC class II, and also that the administration of the DNA-Hsp65/TDM and vector/TDM formulations resulted in the up-regulation of CD80, CD86 and MHC class II expression when compared to control formulations (vector/TDM and empty). Regarding the intracellular trafficking we observed that following phagocytosis, the microspheres were not found in the late endosomes and/or lysosomes, until 15 days after internalization, and we suggest that these constructions were hydrolysed in early compartments. Overall, these data expand our knowledge on PLGA [poly (lactic-co- glycolic acid)] microspheres as gene carriers in vaccination strategies, as well as open perspectives for their potential use in clinical practice.