57 resultados para C-H ACTIVATION
Resumo:
Festuccia WT, Blanchard PG, Oliveira TB, Magdalon J, Paschoal VA, Richard D, Deshaies Y. PPAR gamma activation attenuates cold-induced upregulation of thyroid status and brown adipose tissue PGC-1 alpha and D2. Am J Physiol Regul Integr Comp Physiol 303: R1277-R1285, 2012. First published October 24, 2012; doi:10.1152/ajpregu.00299.2012.-Here, we investigated whether pharmacological PPAR gamma activation modulates key early events in brown adipose tissue (BAT) recruitment induced by acute cold exposure with the aim of unraveling the interrelationships between sympathetic and PPAR gamma signaling. Sprague-Dawley rats treated or not with the PPAR gamma ligand rosiglitazone (15 mg.kg(-1).day(-1), 7 days) were kept at 23 degrees C or exposed to cold (5 degrees C) for 24 h and evaluated for BAT gene expression, sympathetic activity, thyroid status, and adrenergic signaling. Rosiglitazone did not affect the reduction in body weight gain and the increase in feed efficiency, VO2, and BAT sympathetic activity induced by 24-h cold exposure. Rosiglitazone strongly attenuated the increase in serum total and free T4 and T3 levels and BAT iodothyronine deiodinase type 2 (D2) and PGC-1 alpha mRNA levels and potentiated the reduction in BAT thyroid hormone receptor (THR) beta mRNA levels induced by cold. Administration of T3 to rosiglitazone-treated rats exacerbated the cold-induced increase in energy expenditure but did not restore a proper activation of D2 and PGC-1 alpha, nor further increased uncoupling protein 1 expression. Regarding adrenergic signaling, rosiglitazone did not affect the changes in BAT cAMP content and PKA activity induced by cold. Rosiglitazone alone or in combination with cold increased CREB binding to DNA, but it markedly reduced the expression of one of its major coactivators, CREB binding protein. In conclusion, pharmacological PPAR gamma activation impairs short-term cold elicitation of BAT adrenergic and thyroid signaling, which may result in abnormal tissue recruitment and thermogenic activity.
Resumo:
Objectives: To investigate the role of toll-like receptor 9 on sepsis-induced failure of neutrophil recruitment to the site of infection. Design: Prospective experimental study. Setting: University research laboratory. Interventions: Model of polymicrobial sepsis induced by cecal ligation and puncture in wild-type and toll-like receptor 9-deficient mice. Measurements and Main Results: Toll-like receptor 9-deficient mice with cecal ligation and puncture-induced severe sepsis did not demonstrate failure of neutrophil migration and consequently had a low systemic inflammatory response and a high survival rate. Upon investigating the mechanism by which toll-like receptor 9-deficiency prevents the failure of neutrophil migration, it was found that neutrophils derived from toll-like receptor 9-deficient mice with cecal ligation and puncture induced severe sepsis expressed high levels of chemokine C-X-C motif receptor 2 (CXCR2) and had reduced induction of G-protein-coupled receptor kinase 2. Conclusions: These findings suggest that the poor outcome of severe sepsis is associated with toll-like receptor 9 activation in neutrophils, which triggers G-protein-coupled receptor kinase 2 expression and CXCR2 downregulation. These events account for the reduction of neutrophil migration to the site of infection, with consequent spreading of the infection, onset of the systemic inflammatory response, and a decrease in survival. (Crit Care Med 2012; 40:2631-2637)
Resumo:
Background: Increased plasma concentrations of free fatty acids (FFA) can lead to insulin resistance in skeletal muscle, impaired effects on mitochondrial function, including uncoupling of oxidative phosphorylation and decrease of endogenous antioxidant defenses. Nitric oxide (NO) is a highly diffusible gas that presents a half-life of 5-10 seconds and is involved in several physiological and pathological conditions. The effects of palmitic acid on nitric oxide (NO) production by rat skeletal muscle cells and the possible mechanism involved were investigated. Methods: Primary cultured rat skeletal muscle cells were treated with palmitic acid and NO production was assessed by nitrite measurement (Griess method) and 4,5-diaminofluorescein diacetate (DAF-2-DA) assay. Nuclear factor-kappa B (NF-kappa B) activation was evaluated by electrophoretic mobility shift assay and iNOS protein content by western blotting. Results: Palmitic acid treatment increased nitric oxide production. This effect was abolished by treatment with NOS inhibitors, L-nitro-arginine (LNA) and L-nitro-arginine methyl esther (L-NAME). NF-kappa B activation and iNOS content were increased due to palmitic acid treatment. The participation of superoxide on nitric oxide production was investigated by incubating the cells with DAF-2-DA in the presence or absence of palmitic acid, a superoxide generator system (X-XO), a mixture of NOS inhibitors and SOD-PEG (superoxide dismutase linked to polyethylene glycol). Palmitic acid and X-XO system increased NO production and this effect was abolished when cells were treated with NOS inhibitors and also with SOD-PEG. Conclusions: In summary, palmitic acid stimulates NO production in cultured skeletal muscle cells through production of superoxide, nuclear factor-kappa B activation and increase of iNOS protein content. Copyright (C) 2012 S. Karger AG, Basel
Resumo:
Nitroglycerin (GIN) has been clinically used to treat angina pectoris and acute heart episodes for over 100 years. The effects of GTN have long been recognized and active research has contributed to the unraveling of numerous metabolic routes capable of converting GIN to the potent vasoactive messenger nitric oxide. Recently, the mechanism by which minute doses of GIN elicit robust pharmacological responses was revisited and eNOS activation was implicated as an important route mediating vasodilation induced by low GTN doses (1-50 nM). Here, we demonstrate that at such concentrations the pharmacologic effects of nitroglycerin are largely dependent on the phosphatidylinositol 3-kinase, Akt/PKB, and phosphatase and tensin homolog deleted on chromosome 10 (PTEN) signal transduction axis. Furthermore, we demonstrate that nitroglycerin-dependent accumulation of 3,4,5-InsP(3), probably because of inhibition of PTEN, is important for eNOS activation, conferring a mechanistic basis for GIN pharmacological action at pharmacologically relevant doses. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
In a previous study, we reported that the short-term treatment with celecoxib, a nonsteroidal anti-inflammatory drug (NSAID) attenuates the activation of brain structures related to nociception and does not interfere with orthodontic incisor separation in rats. The conclusion was that celecoxib could possibly be prescribed for pain in orthodontic patients. However, we did not analyze the effects of this drug in periodontium. The aim of this follow-up study was to analyze effects of celecoxib treatment on recruitment and activation of osteoclasts and alveolar bone resorption after inserting an activated orthodontic appliance between the incisors in our rat model. Twenty rats (400420 g) were pretreated through oral gavage with celecoxib (50 mg/kg) or vehicle (carboxymethylcellulose 0.4%). After 30 min, they received an activated (30 g) orthodontic appliance, set not to cause any palate disjunction. In sham animals, the appliance was immediately removed after introduction. All animals received ground food and, every 12 h, celecoxib or vehicle. After 48 h, they were anesthetized and transcardiacally perfused through the aorta with 4% formaldehyde. Subsequently, maxillae were removed, post-fixed and processed for histomorphometry or immunohistochemical analyses. As expected, incisor distalization induced an inflammatory response with certain histological changes, including an increase in the number of active osteoclasts at the compression side in group treated with vehicle (appliance: 32.2 +/- 2.49 vs sham: 4.8 +/- 1.79, P<0.05) and celecoxib (appliance: 31.0 +/- 1.45 vs sham: 4.6 +/- 1.82, P<0.05). The treatment with celecoxib did not modify substantially the histological alterations and the number of active osteoclasts after activation of orthodontic appliance. Moreover, we did not see any difference between the groups with respect to percentage of bone resorption area. Taken together with our previous results we conclude that short-term treatment with celecoxib can indeed be a therapeutic alternative for pain relieve during orthodontic procedures.
Resumo:
Endophytic microorganisms live inside tissues of host plants apparently do not causing warning to them, and area promising source of bioactive molecules as antimicrobial and antitumoral drugs. In this work, we report the isolation of eugenitin from cultures of the endophyte Mycoleptodiscus indicus and its potential as additive for Aspergillus niveus glucoamylase activation. The glucoamylase hydrolytic activity increased twofold using 5 mM of eugenitin and this activation could be explained by the binding mode of eugenitin with the three-dimensional structure of glucoamylase. The in silica prediction of ligand binding sites revealed at least 9 possible interaction sites able to accommodate eugenitin on glucoamylase from Hypocrea jecorina. Besides, we evaluated the effect of pH and temperature on activity and stability, as well as in the hydrolysis of different substrates and kinetic parameters either in presence or absence of eugenitin. The results displayed by eugenitin as additive to glucoamylase activation are promising and provide novel perspectives for applications of fungal metabolites. (C) 2011 Elsevier B.V. All rights reserved.
Activation pattern of neutrophils from blood of elderly individuals with -related denture stomatitis
Resumo:
We have identified impaired neutrophils in elderly individuals which could be involved with -related denture stomatitis (DS), an oral infection predominantly caused by , affecting especially elderly individuals using dental prosthesis. However, specific mechanisms performed by neutrophil contributing to the susceptibility of the elderly to DS are not fully understood. This study evaluated activation features of blood neutrophils from elderly and young individuals with DS. Blood neutrophils cultured with . from elderly subjects secreted decreased levels of CXCL8. However, . challenged-neutrophils from DS patients produced high IL-4 and IL-10, and low GM-CSF levels, regardless of age. Additional elastase activity of neutrophils from both elderly groups was detected after incubation with . , but only neutrophils from elderly DS demonstrated high myeloperoxidase activity. Therefore, DS patients have affected neutrophils, and the advance of age intensifies these damages. In sumamry, individuals with -related denture stomatitis presented variation in the neutrophil phenotype and activation. Such alterations were more intense in neutrophils from infected elderly individuals.
Resumo:
Studies on the environmental consequences of stress are relevant for economic and animal welfare reasons. We recently reported that long-term heat stressors (31 +/- 1 degrees C and 36 +/- 1 degrees C for 10 h/d) applied to broiler chickens (Gallus gallus domesticus) from d 35 to 42 of life increased serum corticosterone concentrations, decreased performance variables and the macrophage oxidative burst, and produced mild, multifocal acute enteritis. Being cognizant of the relevance of acute heat stress on tropical and subtropical poultry production, we designed the current experiment to analyze, from a neuroimmune perspective, the effects of an acute heat stress (31 +/- 1 degrees C for 10 h on d 35 of life) on serum corticosterone, performance variables, intestinal histology, and peritoneal macrophage activity in chickens. We demonstrated that the acute heat stress increased serum corticosterone concentrations and mortality and decreased food intake, BW gain, and feed conversion (P < 0.05). We did not find changes in the relative weights of the spleen, thymus, and bursa of Fabricius (P > 0.05). Increases in the basal and the Staphylococcus aureus-induced macrophage oxidative bursts and a decrease in the percentage of macrophages performing phagocytosis were also observed. Finally, mild, multifocal acute enteritis, characterized by the increased presence of lymphocytes and plasmocytes within the lamina propria of the jejunum, was also observed. We found that the stress-induced hypothalamic-pituitary-adrenal axis activation was responsible for the negative effects observed on chicken performance and immune function as well as for the changes in the intestinal mucosa. The data presented here corroborate with those presented in other studies in the field of neuroimmunomodulation and open new avenues for the improvement of broiler chicken welfare and production performance.
Resumo:
Motor imagery, passive movement, and movement observation have been suggested to activate the sensorimotor system without overt movement. The present study investigated these three covert movement modes together with overt movement in a within-subject design to allow for a fine-grained comparison of their abilities in activating the sensorimotor system, i.e. premotor, primary motor, and somatosensory cortices. For this, 21 healthy volunteers underwent functional magnetic resonance imaging (fMRI). In addition we explored the abilities of the different covert movement modes in activating the sensorimotor system in a pilot study of 5 stroke patients suffering from chronic severe hemiparesis. Results demonstrated that while all covert movement modes activated sensorimotor areas, there were profound differences between modes and between healthy volunteers and patients. In healthy volunteers, the pattern of neural activation in overt execution was best resembled by passive movement, followed by motor imagery, and lastly by movement observation. In patients, attempted overt execution was best resembled by motor imagery, followed by passive movement and lastly by movement observation. Our results indicate that for severely hemiparetic stroke patients motor imagery may be the preferred way to activate the sensorimotor system without overt behavior. In addition, the clear differences between the covert movement modes point to the need for within-subject comparisons. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
The goals of this study are to evaluate in vitro compatibility of magnetic nanomaterials and their therapeutic potential against cancer cells. Highly stable ionic magnetic fluid sample (maghemite, gamma-Fe2O3) and Selol were incorporated into polymeric nanocapsules by nanoprecipitation method. The cytotoxic effect of Selol-loaded magnetic nanocapsules was assessed on murine melanoma (B16-F10) and oral squamous cell carcinoma (OSCC) cell lines following AC magnetic field application. The influence of different nanocapsules on cell viability was investigated by colorimetric MTT 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay. In the absence of AC magnetic field Selol-loaded magnetic nanocapsules, containing 100 mu g/mL Selol plus 5 x 10(12) particle/mL, showed antitumoral activity of about 50% on B16-F10 melanoma cells while OSCC carcinoma cells demonstrated drug resistance at all concentrations of Selol and magnetic fluid (range of 100-500 mu g/mL Selol and 5 x 10(12) -2.5 x 10(13) particle/mL). On the other hand, under AC applied fields (1 MHz and 40 Oe amplitude) B16-F10 cell viability was reduced down to 40.5% (+/- 3.33) at the highest concentration of nanoencapsulated Selol. The major effect, however, was observed on OSCC cells since the cell viability drops down to about 33.3% (+/- 0.38) under application of AC magnetic field. These findings clearly indicate that the Selol-loaded magnetic nanocapsules present different toxic effects on neoplastic cell lines. Further, the cytotoxic effect was maximized under AC magnetic field application on OSCC, which emphasizes the effectiveness of the magnetohyperthermia approach. (C) 2012 American Institute of Physics. [doi: 10.1063/1.3680541]
Resumo:
Several studies from our group have indicated that the BNST play an important role in baroreflex modulation. However, the involvement of the BNST in the chemoreflex activity is unknown. Thus, in the present study, we investigated the effect of the local bed nucleus of stria terminalis (BNST) neurotransmission inhibition by bilateral microinjections of the non-selective synaptic blocker cobalt chloride (CoCl2) on the cardiovascular responses to chemoreflex activation in rats. For this purpose, chemoreflex was activated with KCN (i.v.) before and after microinjections of CoCl2 into the BNST. Reversible BNST inactivation produced no significant changes in the magnitude and durations of both pressor and bradycardic responses to intravenous KCN infusion. These findings suggesting that BNST neurotransmission have not influence on both sympathoexcitatory and parasympathoexcitatory components of the peripheral chemoreflex activation. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Objective. The aim of this study was to investigate the effect of CAPE on the insulin signaling and inflammatory pathway in the liver of mice with high fat diet induced obesity. Material/Methods. Swiss mice were fed with standard chow or high-fat diet for 12-week. After the eighth week, animals in the HFD group with serum glucose levels higher than 200 mg/dL were divided into two groups, HFD and HFD receiving 30 mg/kg of CAPE for 4 weeks. After 12 weeks, the blood samples could be collected and liver tissue extracted for hormonal and biochemical measurements, and insulin signaling and inflammatory pathway analyzes. Results. The high-fat diet group exhibited more weight gain, glucose intolerance, and hepatic steatosis compared with standard diet group. The CAPE treatment showed improvement in glucose sensitivity characterized by an area under glucose curve similar to the control group in an oral glucose tolerance test Furthermore, CAPE treatment promoted amelioration in hepatic steatosis compared with the high-fat diet group. The increase in glucose sensitivity was associated with the improvement in insulin-stimulated phosphorylation of the insulin receptor substrate-2, followed by an increase in Akt phosphorylation. In addition, it was observed that CAPE reduced the induction of the inflammatory pathway, c-jun-N- terminal kinase, the nuclear factor kappa B, and cyclooxygenase-2 expression, respectively. Conclusions. Overall, these findings indicate that CAPE exhibited anti-inflammatory activity that partly restores normal metabolism, reduces the molecular changes observed in obesity and insulin resistance, and therefore has a potential as a therapeutic agent in obesity. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
Exposure to elevated levels of maternal cytokines can lead to functional abnormalities of the dopaminergic system in the adult offspring, including enhanced amphetamine (AMPH)-induced locomotion. Therefore, it seems reasonable to consider that offspring of challenged mothers would behave differently in models of addictive behavior, such as behavioral sensitization. Thus, we sought to evaluate the effects of prenatal exposure to lipopolysaccharide (LPS) on the locomotor response to acute and chronic AMPH treatment in male mice offspring. For this purpose, LPS (Escherichia coli 0127:B8; 120 mu g/kg) was administered intraperitoneally to pregnant Swiss mice on gestational day 17. At adulthood, male offspring were studied under one of the following conditions: (1) locomotor response to acute AMPH treatment (2.5 or 5.0 mg/kg) in an open field test; (2) behavioral sensitization paradigm, which consists of a daily injection of AMPH (1.0 mg/kg) for 10 days and observation of locomotion in the open field on days 1, 5, 10 (development phase), 15 and 17 (expression phase). The LPS stimulated offspring showed enhancement of the locomotor-stimulant effect after an acute AMPH challenge in comparison to baseline and saline pre-treated mice. They also showed development of behavioral sensitization earlier than the saline pre-treated group, although no changes between saline and LPS pre-treated groups were observed on development or expression of locomotor behavioral sensitization to AMPH. Furthermore, there was up-regulation of D1 receptor protein level within striatum in the LPS-stimulated offspring which was strongly correlated with increased grooming behavior. Taken together, our results indicate that motor and dopaminergic alterations caused by maternal immune activation are restricted to the acute AMPH challenge, mostly due to up-regulation of the D1 receptor within the mesolimbic and nigrostriatal pathways, but no locomotor differences were observed for behavioral sensitization to AMPH. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
The peroxisome proliferator-activated receptor gamma (PPAR gamma) is a target for treatment of type II diabetes and other conditions. PPAR gamma full agonists, such as thiazolidinediones (TZDs), are effective insulin sensitizers and anti-inflammatory agents, but their use is limited by adverse side effects. Luteolin is a flavonoid with anti-inflammatory actions that binds PPAR gamma but, unlike TZDs, does not promote adipocyte differentiation. However, previous reports suggested variously that luteolin is a PPAR gamma agonist or an antagonist. We show that luteolin exhibits weak partial agonist/antagonist activity in transfections, inhibits several PPAR gamma target genes in 3T3-L1 cells (LPL, ORL1, and CEBP alpha) and PPAR gamma-dependent adipogenesis, but activates GLUT4 to a similar degree as rosiglitazone, implying gene-specific partial agonism. The crystal structure of the PPAR gamma ligand-binding domain (LBD) reveals that luteolin occupies a buried ligand-binding pocket (LBP) but binds an inactive PPAR gamma LBD conformer and occupies a space near the beta-sheet region far from the activation helix (H12), consistent with partial agonist/antagonist actions. A single myristic acid molecule simultaneously binds the LBP, suggesting that luteolin may cooperate with other ligands to bind PPAR gamma, and molecular dynamics simulations show that luteolin and myristic acid cooperate to stabilize the Omega-loop among H2', H3, and the beta-sheet region. It is noteworthy that luteolin strongly suppresses hypertonicity-induced release of the pro-inflammatory interleukin-8 from human corneal epithelial cells and reverses reductions in transepithelial electrical resistance. This effect is PPAR gamma-dependent. We propose that activities of luteolin are related to its singular binding mode, that anti-inflammatory activity does not require H12 stabilization, and that our structure can be useful in developing safe selective PPAR gamma modulators.
Resumo:
Purpose Intestinal mucositis and the closely associated diarrhea are common costly side effects of irinotecan. Cytokine modulators, such as thalidomide and pentoxifylline, are found capable of attenuating intestinal mucositis progression. Nitric oxide (NO) seems to be a key mediator of the antineoplastic drug toxicity. The aim of this study was to investigate the role of NO on the pathogenesis of intestinal mucositis, as well as the participation of cytokines upon inducible nitric oxide synthase (iNOS) expression in irinotecan-induced intestinal mucositis. Methods iNOS-knockout (iNOS(-/-)) and C57BL/6 (WT, wild type) animals (n = 5-6) were given either saline or irinotecan (60 mg/kg i.p for 4 days), with or without pretreatment with aminoguanidine (50 mg/kg s.c.), thalidomide (60 mg/kg s.c), infliximab (5 mg/kg i.v.), or pentoxifylline (1.7 mg/kg s.c). On day 5, diarrhea was assessed, and following euthanasia, proximal intestinal samples were obtained for myeloperoxidase (MPO) and iNOS activity, morphometric analysis, western blot and immunohistochemistry to iNOS, cytokine dosage, and for in vitro evaluation of gut contractility. Results Irinotecan induced severe diarrhea and intestinal smooth muscle over-contractility, accompanied with histopathological changes. Additionally, increased MPO and iNOS activity and iNOS immunoexpression were found in WT animals treated with irinotecan. The rise in MPO, smooth muscle over-contractility, and diarrhea were abrogated in aminoguanidine-treated and iNOS(-/-) mice. Moreover, through western blot, we verified that infliximab and pentoxifylline significantly inhibited irinotecan-induced iNOS expression. In addition, cytokine concentration was found only partially decreased in irinotecan-treated iNOS(-/-) mice when compared with wild-type animals that were given irinotecan. Conclusions This study suggests a role of nitric oxide in the pathogenesis of irinotecan-induced intestinal mucositis and also provides evidence for the participation of cytokines on iNOS induction.