23 resultados para transition metal phosphide


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Samples of 40SiO(2)center dot 30Na(2)O center dot 1Al(2)O(3)center dot(29 - x)B2O3 center dot xFe(2)O(3) (mol%), with 0.0 <= x <= 17.5, were prepared by the fusion method and investigated by electron paramagnetic resonance (EPR), optical absorption (OA) and Mossbauer spectroscopy (MS). The EPR spectra of the as-synthesized samples exhibit two well-defined EPR signals around g = 4.27 and g = 2.01 and a visible EPR shoulder around g = 6.4, assigned to isolated Fe3+ ion complexes (g = 4.27 and g = 6.4) and Fe3+-based clusters (g = 2.01). Analyses of both EPR line intensity and line width support the model picture of Fe3+-based clusters built in from two sources of isolated ions, namely Fe2+ and Fe3+; the ferrous ion being used to build in iron-based clusters at lower x-content (below about x = 2.5%) whereas the ferric ion is used to build in iron-based clusters at higher x-content (above about x = 2.5%). The presence of Fe2+ ions incorporated within the glass template is supported by OA data with a strong band around 1100 nm due to the spin-allowed E-5(g)-T-5(2g) transition in an octahedral coordination with oxygen. Additionally, Mossbauer data (isomer shift and quadrupole splitting) confirm incorporation of both Fe2+ and Fe3+ ions within the template, more likely in tetrahedral-like environments. We hypothesize that ferrous ions are incorporated within the glass template as FeO4 complex resulting from replacing silicon in non-bridging oxygen (SiO3O-) sites whereas ferric ions are incorporated as FeO4 complex resulting from replacing silicon in bridging-like oxygen silicate groups (SiO4). (C) 2012 Elsevier Masson SAS. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Ring Opening Metathesis Polymerization (ROMP) of cyclic olefins is a powerful transition metal-catalyzed reaction for syntheses of polymers and copolymers. The key feature of this reaction is the [2+2]-cycloaddition mechanism, with retention of the olefinic unsaturation in the polymer chain and occurrence of living polymerization. With the development of metal-carbene type catalysts for this process, many addressed polymeric materials have been successfully prepared to be employed in several fields of the science and technology. This review summarizes recent examples of syntheses of polymers with amphiphilic features such as block, graft, brush or star copolymers; as well syntheses of biomaterials, dendronized architectures, photoactive polymers, cross-linked or self-healing materials, and polymers from renewed supplies.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Graphene has received great attention due to its exceptional properties, which include corners with zero effective mass, extremely large mobilities, this could render it the new template for the next generation of electronic devices. Furthermore it has weak spin orbit interaction because of the low atomic number of carbon atom in turn results in long spin coherence lengths. Therefore, graphene is also a promising material for future applications in spintronic devices - the use of electronic spin degrees of freedom instead of the electron charge. Graphene can be engineered to form a number of different structures. In particular, by appropriately cutting it one can obtain 1-D system -with only a few nanometers in width - known as graphene nanoribbon, which strongly owe their properties to the width of the ribbons and to the atomic structure along the edges. Those GNR-based systems have been shown to have great potential applications specially as connectors for integrated circuits. Impurities and defects might play an important role to the coherence of these systems. In particular, the presence of transition metal atoms can lead to significant spin-flip processes of conduction electrons. Understanding this effect is of utmost importance for spintronics applied design. In this work, we focus on electronic transport properties of armchair graphene nanoribbons with adsorbed transition metal atoms as impurities and taking into account the spin-orbit effect. Our calculations were performed using a combination of density functional theory and non-equilibrium Greens functions. Also, employing a recursive method we consider a large number of impurities randomly distributed along the nanoribbon in order to infer, for different concentrations of defects, the spin-coherence length.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The intermetallic compounds ScPdZn and ScPtZn were prepared from the elements by high-frequency melting in sealed tantalum ampoules. Both structures were refined from single crystal X-ray diffractometer data: YAlGe type, Cmcm, a = 429.53(8), b = 907.7(1), c = 527.86(1) pm, wR2 = 0.0375, 231 F2 values, for ScPdZn and a = 425.3(1), b = 918.4(2), c = 523.3(1) pm, wR2 = 0.0399, 213 F2 values for ScPtZn with 14 variables per refinement. The structures are orthorhombically distorted variants of the AlB2 type. The scandium and palladium (platinum atoms) build up ordered networks Sc3Pd3 and Sc3Pt3 (boron networks) which are slightly shifted with respect to each other. These networks are penetrated by chains of zinc atoms (262 pm in ScPtZn) which correspond to the aluminum positions, i.e. Zn(ScPd) and Zn(ScPt). The corresponding group-subgroup scheme and the differences in chemical bonding with respect to other AlB2-derived REPdZn and REPtZn compounds are discussed. 45Sc solid state NMR spectra confirm the single crystallographic scandium sites. From electronic band structure calculations the two compounds are found metallic with free electron like behavior at the Fermi level. A larger cohesive energy for ScPtZn suggests a more strongly bonded intermetallic than ScPdZn. Electron localization and overlap population analyses identify the largest bonding for scandium with the transition metal (Pd, Pt).

Relevância:

40.00% 40.00%

Publicador:

Resumo:

High quality KMo4O6 single crystals with tetragonal structure (space group P4/mbm) have been prepared by fused salt electrolysis. The crystals were studied by scanning electron microscopy (SEM), X-ray diffractometry, electrical resistivity, and magnetization measurements. X-ray powder diffraction patterns and SEM have given some information on the growth of single crystals. Electrical resistivity as a function of temperature shows that the KMo4O6 compound is a bad metal with resistivity change of approximately 30% in the temperature range from 2 to 300K. A metal-insulator transition (MIT), observed at approximately 110K, has been also confirmed for this material. Magnetization as a function of temperature agrees with previous report, however a magnetic ordering has been observed in M(H) curves in the whole temperature range.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A series of heavy metal oxide (HMO) glasses with composition 26.66B(2)O(3)-16GeO(2)-4 Bi2O3-(53.33-x)PbO-xPbF2 (0 <= x <= 40) were prepared and characterized with respect to their bulk (glass transition and crystallization temperatures, densities, molar volumes) and spectroscopic properties. Homogeneous glasses are formed up to x = 30, while crystallization of beta-PbF2 takes place at higher contents. Substitution of PbO by PbF2 shifts the optical band gap toward higher energies, thereby extending the UV transmission window significantly toward higher frequencies. Raman and infrared absorption spectra can be interpreted in conjunction with published reference data. Using B-11 and F-19 high-resolution solid state NMR as well as B-11/F-19 double resonance methodologies, we develop a quantitative structural description of this material. The fraction of four-coordinate boron is found to be moderately higher compared to that in glasses with the same PbO/B2O3 ratios, suggesting some participation of PbF2 in the network transformation process. This suggestion is confirmed by the F-19 NMR spectra. While the majority of the fluoride ions is present as ionic fluoride, similar to 20% of the fluorine inventory acts as a network modifier, resulting in the formation of four-coordinate BO3/2F- units. These units can be identified by F-19{B-11} rotational echo double resonance and B-11{F-19} cross-polarization magic angle spinning (CPMAS) data. These results provide the first unambiguous evidence of B-F bonding in a PbF2-modified glass system. The majority of the fluoride ions are found in a lead-dominated environment. F-19-F-19 homonuclear dipolar second moments measured by spin echo decay spectroscopy are quantitatively consistent with a model in which these ions are randomly distributed within the network modifier subdomain consisting of PbO, Bi2O3, and PbF2. This model, which implies both the features of atomic scale mixing with the network former borate species and some degree of fluoride ion clustering is consistent with all of the experimental data obtained on these glasses.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A metal-insulator transition in a two-dimensional semimetal based on HgTe quantum wells is discovered. The transition is induced by a magnetic field applied parallel to the plane of the quantum well. The threshold behavior of the activation energy as a function of the magnetic-field strength and an abrupt reduction of the Hall resistance at the onset of the transition suggest that the observed effect originates from the formation of an excitonic insulator.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The evolution of the structure and properties of Cr/Cr oxide thin films deposited on HK40 steel substrates by reactive magnetron sputtering (RMS) was investigated and linked to their potential protective behavior against metal dusting. Deposition time, mode of oxygen feeding, and application of bias voltage were varied to assess their effect on the density, adhesion, and integrity of the films. All the films showed a very fine columnar microstructure and the presence of amorphous Cr oxide. Both, an increasing time and a constant oxygen flow during deposition led to the development of relatively low density films and mud-like cracking patterns. A graded oxygen flow resulted in films with fewer cracks, but a careful control of the oxygen flow is required to obtain films with a truly graded structure. The effect of the bias voltage was much more significant and beneficial. An increasing negative bias voltage resulted in the development of denser films with a transition to an almost crack-free structure and better adhesion. The amorphous oxide resulted in low values of hardness and Young's modulus. (C) 2012 Elsevier B.V. All rights reserved.