46 resultados para pedalitin 6 o beta glucopyranoside
Resumo:
This article introduces generalized beta-generated (GBG) distributions. Sub-models include all classical beta-generated, Kumaraswamy-generated and exponentiated distributions. They are maximum entropy distributions under three intuitive conditions, which show that the classical beta generator skewness parameters only control tail entropy and an additional shape parameter is needed to add entropy to the centre of the parent distribution. This parameter controls skewness without necessarily differentiating tail weights. The GBG class also has tractable properties: we present various expansions for moments, generating function and quantiles. The model parameters are estimated by maximum likelihood and the usefulness of the new class is illustrated by means of some real data sets. (c) 2011 Elsevier B.V. All rights reserved.
Resumo:
Inclusion compounds of Al-quercetin and Al-catechin complexes with beta-cyclodextrin (beta CD) were investigated. The complex and the inclusion compound of quercetin are more effective DPPHaEuro cent scavengers than the corresponding catechin compounds and the inclusion does not compromise their scavenging abilities, with only a slight decrease in the EC50 values. This is in accordance with the electrochemical data, which revealed that the inclusion compounds have lower diffusion coefficients in aqueous solution than the non-included compounds. For the quercetin compounds, some spectroscopic properties were also addressed by means of UV-visible and NMR measurements in aqueous media.
Resumo:
Lupulones, hops beta-acids, are one of the main constituents of the hops resin and have an important contribution to the overall bacteriostatic activity of hops during beer brewing. The use of lupulones as natural alternatives to antibiotics is increasing in the food industry and also in bioethanol production. However, lupulones are easy oxidizable and have been shown to be very reactive toward 1-hydroxyethyl radical with apparent bimolecular rate constants close to diffusion control k = 2.9 x 10(8) and 2.6 x 10(8) L mol(-1) s(-1) at 25.0 +/- 0.2 degrees C in ethanol water solution (10% of ethanol (v/v)) as probed by EPR and ESI-IT-MS/MS spin-trapping competitive kinetics, respectively. The free energy change for an electron-transfer mechanism is Delta G degrees = 106 kJ/mol as calculated from the oxidation peak potential experimentally determined for lupulones (1.1 V vs NHE) by cyclic voltammetry and the reported reduction potential for 1-hydroxyethyl radical. The major reaction products identified by LC-ESI-IT-MS/MS and ultrahigh-resolution accurate mass spectrometry (orbitrap FT-MS) are hydroxylated lupulone derivatives and 1-hydroxyethyl radical adducts. The lack of pH dependence for the reaction rate constant, the calculated free energy change for electron transfer, and the main reaction products strongly suggest the prenyl side chains at the hops beta-acids as the reaction centers rather than the beta,beta'-triketone moiety.
Resumo:
Background: Thyroid hormones (THs) are known to regulate protein synthesis by acting at the transcriptional level and inducing the expression of many genes. However, little is known about their role in protein expression at the post-transcriptional level, even though studies have shown enhancement of protein synthesis associated with mTOR/p70S6K activation after triiodo-l-thyronine (T3) administration. On the other hand, the effects of TH on translation initiation and polypeptidic chain elongation factors, being essential for activating protein synthesis, have been poorly explored. Therefore, considering that preliminary studies from our laboratory have demonstrated an increase in insulin content in INS-1E cells in response to T3 treatment, the aim of the present study was to investigate if proteins of translational nature might be involved in this effect. Methods: INS-1E cells were maintained in the presence or absence of T3 (10(-6) or 10(-8) M) for 12 hours. Thereafter, insulin concentration in the culture medium was determined by radioimmunoassay, and the cells were processed for Western blot detection of insulin, eukaryotic initiation factor 2 (eIF2), p-eIF2, eIF5A, EF1A, eIF4E binding protein (4E-BP), p-4E-BP, p70S6K, and p-p70S6K. Results: It was found that, in parallel with increased insulin generation, T3 induced p70S6K phosphorylation and the expression of the translational factors eIF2, eIF5A, and eukaryotic elongation factor 1 alpha (eEF1A). In contrast, total and phosphorylated 4E-BP, as well as total p70S6K and p-eIF2 content, remained unchanged after T3 treatment. Conclusions: Considering that (i) p70S6K induces S6 phosphorylation of the 40S ribosomal subunit, an essential condition for protein synthesis; (ii) eIF2 is essential for the initiation of messenger RNA translation process; and (iii) eIF5A and eEF1A play a central role in the elongation of the polypeptidic chain during the transcripts decoding, the data presented here lead us to suppose that a part of T3-induced insulin expression in INS-1E cells depends on the protein synthesis activation at the post-transcriptional level, as these proteins of the translational machinery were shown to be regulated by T3.
Resumo:
Interleukin (IL)-1 beta, tumor necrosis factor (TNF)-alpha, and IL-6 have been established as important mediators of fever induced by lipopolysaccharide (LPS) from Gram-negative bacteria. Whether these pro-inflammatory cytokines are also important in mediating fever induced by live bacteria remains less certain. We therefore investigated the following: (1) the synthesis of TNF-alpha, IL-1 beta, and IL-6 during E. coli-induced fever and (2) the effect of blocking the action of cytokines within the brain on E. coli-induced fever. Body or tail skin temperature (bT or Tsk, respectively) was measured by biotelemetry or telethermometry, every 30 min, during 6 or 24 h. Depending on the number of colony-forming units (CFU) injected i.p., administration of E. coli induced a long-lasting increase in bT of male Wistar rats. The duration of fever did not correlate with the number of CFU found in peritoneal cavity or blood. Because 2.5 x 10(8) CFU induced a sustained fever without inducing a state of sepsis/severe infection, this dose was used in subsequent experiments. The E. coli-induced increase in bT was preceded by a decrease in Tsk, reflecting a thermoregulatory response. TNF-alpha, IL-1 beta, and IL-6 were detected at 3 h in serum of animals injected i.p. with E. coli. In the peritoneal exudates, TNF-alpha, IL-1 beta, and IL-6 were detected at 0.5 and 3 h after E. coli administration. Moreover, both IL-1 beta and IL-6, but not TNF-alpha, were found in the cerebrospinal fluid (CSF) and hypothalamus of animals injected with E. coli. Although pre-treatment (i.c.v., 2 mu l, 15 min before) with anti-IL-6 antibody (anti-IL-6, 5 mu g) reduced E. coli-induced fever, pre-treatment with either IL-1 receptor antagonist (IL-1ra, 200 mu g) or soluble TNF receptor I (sTNFRI, 500 ng) had no effect on the fever response. In conclusion, replicating E. coli promotes an integrated thermoregulatory response in which the central action of IL-6, but not IL-1 and TNF, appears to be important.
Resumo:
Chronic kidney diseasemineral bone disorder (CKD-MBD) is defined by abnormalities in mineral and hormone metabolism, bone histomorphometric changes, and/or the presence of soft-tissue calcification. Emerging evidence suggests that features of CKD-MBD may occur early in disease progression and are associated with changes in osteocyte function. To identify early changes in bone, we utilized the jck mouse, a genetic model of polycystic kidney disease that exhibits progressive renal disease. At 6 weeks of age, jck mice have normal renal function and no evidence of bone disease but exhibit continual decline in renal function and death by 20 weeks of age, when approximately 40% to 60% of them have vascular calcification. Temporal changes in serum parameters were identified in jck relative to wild-type mice from 6 through 18 weeks of age and were subsequently shown to largely mirror serum changes commonly associated with clinical CKD-MBD. Bone histomorphometry revealed progressive changes associated with increased osteoclast activity and elevated bone formation relative to wild-type mice. To capture the early molecular and cellular events in the progression of CKD-MBD we examined cell-specific pathways associated with bone remodeling at the protein and/or gene expression level. Importantly, a steady increase in the number of cells expressing phosphor-Ser33/37-beta-catenin was observed both in mouse and human bones. Overall repression of Wnt/beta-catenin signaling within osteocytes occurred in conjunction with increased expression of Wnt antagonists (SOST and sFRP4) and genes associated with osteoclast activity, including receptor activator of NF-?B ligand (RANKL). The resulting increase in the RANKL/osteoprotegerin (OPG) ratio correlated with increased osteoclast activity. In late-stage disease, an apparent repression of genes associated with osteoblast function was observed. These data confirm that jck mice develop progressive biochemical changes in CKD-MBD and suggest that repression of the Wnt/beta-catenin pathway is involved in the pathogenesis of renal osteodystrophy. (C) 2012 American Society for Bone and Mineral Research.
Resumo:
In this article, for the first time, we propose the negative binomial-beta Weibull (BW) regression model for studying the recurrence of prostate cancer and to predict the cure fraction for patients with clinically localized prostate cancer treated by open radical prostatectomy. The cure model considers that a fraction of the survivors are cured of the disease. The survival function for the population of patients can be modeled by a cure parametric model using the BW distribution. We derive an explicit expansion for the moments of the recurrence time distribution for the uncured individuals. The proposed distribution can be used to model survival data when the hazard rate function is increasing, decreasing, unimodal and bathtub shaped. Another advantage is that the proposed model includes as special sub-models some of the well-known cure rate models discussed in the literature. We derive the appropriate matrices for assessing local influence on the parameter estimates under different perturbation schemes. We analyze a real data set for localized prostate cancer patients after open radical prostatectomy.
Resumo:
The xylanase biosynthesis is induced by its substrate-xylan. The high xylan content in some wastes such as wheat residues (wheat bran and wheat straw) makes them accessible and cheap sources of inducers to be mainly applied in great volumes of fermentation, such as those of industrial bioreactors. Thus, in this work, the main proposal was incorporated in the nutrient medium wheat straw particles decomposed to soluble compounds (liquor) through treatment of lignocellulosic materials in autohydrolysis process, as a strategy to increase and undervalue xylanase production by Aspergillus ochraceus. The wheat straw autohydrolysis liquor produced in several conditions was used as a sole carbon source or with wheat bran. The best conditions for xylanase and beta-xylosidase production were observed when A. ochraceus was cultivated with 1% wheat bran added of 10% wheat straw liquor (produced after 15 min of hydrothermal treatment) as carbon source. This substrate was more favorable when compared with xylan, wheat bran, and wheat straw autohydrolysis liquor used separately. The application of this substrate mixture in a stirred tank bioreactor indicated the possibility of scaling up the process to commercial production.
Resumo:
Two new peptidic proteasome inhibitors were isolated as trace components from a Curacao collection of the marine cyanobacterium Symploca sp. Carmaphycin A (1) and carmaphycin B (2) feature a leucine-derived a,beta-epoxyketone warhead directly connected to either methionine sulfoxide or methionine sulfone. Their structures were elucidated on the basis of extensive NMR and MS analyses and confirmed by total synthesis, which in turn provided more material for further biological evaluations. Pure carmaphycins A and B were found to inhibit the beta 5 subunit (chymotrypsin-like activity) of the S. cerevisiae 20S proteasome in the low nanomolar range. Additionally, they exhibited strong cytotoxicity to lung and colon cancer cell lines, as well as exquisite antiproliferative effects in the NCI60 cell-line panel. These assay results as well as initial structural biology studies suggest a distinctive binding mode for these new inhibitors.
Resumo:
The beta-Birnbaum-Saunders (Cordeiro and Lemonte, 2011) and Birnbaum-Saunders (Birnbaum and Saunders, 1969a) distributions have been used quite effectively to model failure times for materials subject to fatigue and lifetime data. We define the log-beta-Birnbaum-Saunders distribution by the logarithm of the beta-Birnbaum-Saunders distribution. Explicit expressions for its generating function and moments are derived. We propose a new log-beta-Birnbaum-Saunders regression model that can be applied to censored data and be used more effectively in survival analysis. We obtain the maximum likelihood estimates of the model parameters for censored data and investigate influence diagnostics. The new location-scale regression model is modified for the possibility that long-term survivors may be presented in the data. Its usefulness is illustrated by means of two real data sets. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Humicola brevis var. thermoidea cultivated under solid state fermentation in wheat bran and water (1:2 w/v) was a good producer of beta-glucosidase and xylanase. After optimization using response surface methodology the level of xylanase reached 5,791.2 +/- A 411.2 U g(-1), while beta-glucosidase production was increased about 2.6-fold, reaching 20.7 +/- A 1.5 U g(-1). Cellulase levels were negligible. Biochemical characterization of H. brevis beta-glucosidase and xylanase activities showed that they were stable in a wide pH range. Optimum pH for beta-glucosidase and xylanase activities were 5.0 and 5.5, respectively, but the xylanase showed 80 % of maximal activity when assayed at pH 8.0. Both enzymes presented high thermal stability. The beta-glucosidase maintained about 95 % of its activity after 26 h in water at 55 A degrees C, with half-lives of 15.7 h at 60 A degrees C and 5.1 h at 65 A degrees C. The presence of xylose during heat treatment at 65 A degrees C protected beta-glucosidase against thermal inactivation. Xylanase maintained about 80 % of its activity after 200 h in water at 60 A degrees C. Xylose stimulated beta-glucosidase activity up to 1.7-fold, at 200 mmol L-1. The notable features of both xylanase and beta-glucosidase suggest that H. brevis crude culture extract may be useful to compose efficient enzymatic cocktails for lignocellulosic materials treatment or paper pulp biobleaching.
Resumo:
Background/Aims: beta(2)-adrenoceptor (beta(2)-AR) activation induces smooth muscle relaxation and endothelium-derived nitric oxide (NO) release. However, whether endogenous basal beta(2)-AR activity controls vascular redox status and NO bioavailability is unclear. Thus, we aimed to evaluate vascular reactivity in mice lacking functional beta(2)-AR (beta 2KO), focusing on the role of NO and superoxide anion. Methods and Results: Isolated thoracic aortas from beta 2KO and wild-type mice (WT) were studied. beta 2KO aortas exhibited an enhanced contractile response to phenylephrine compared to WT. Endothelial removal and L-NAME incubation increased phenylephrine-induced contraction, abolishing the differences between beta 2KO and WT mice. Basal NO availability was reduced in aortas from beta 2KO mice. Incubation of beta 2KO aortas with superoxide dismutase or NADPH inhibitor apocynin restored the enhanced contractile response to phenylephrine to WT levels. beta 2KO aortas exhibited oxidative stress detected by enhanced dihydroethidium fluorescence, which was normalized by apocynin. Protein expression of eNOS was reduced, while p47(phox) expression was enhanced in beta 2KO aortas. Conclusions: The present results demonstrate for the first time that enhanced NADPH-derived superoxide anion production is associated with reduced NO bioavailability in aortas of beta 2KO mice. This study extends the knowledge of the relevance of the endogenous activity of beta(2)-AR to the maintenance of the vascular physiology. Copyright (C) 2012 S. Karger AG, Basel
Resumo:
Background: Equations to predict maximum heart rate (HRmax) in heart failure (HF) patients receiving beta-adrenergic blocking (BB) agents do not consider the cause of HF. We determined equations to predict HRmax in patients with ischemic and nonischemic HF receiving BB therapy. Methods and Results: Using treadmill cardiopulmonary exercise testing, we studied HF patients receiving BB therapy being considered for transplantation from 1999 to 2010. Exclusions were pacemaker and/or implantable defibrillator, left ventricle ejection fraction (LVEF) >50%, peak respiratory exchange ratio (RER) <1.00, and Chagas disease. We used linear regression equations to predict HRmax based on age in ischemic and nonischemic patients. We analyzed 278 patients, aged 47 +/- 10 years, with ischemic (n = 75) and nonischemic (n = 203) HF. LVEF was 30.8 +/- 9.4% and 28.6 +/- 8.2% (P = .04), peak VO2 16.9 +/- 4.7 and 16.9 +/- 5.2 mL kg(-1) min(-1) (P = NS), and the HRmax 130.8 +/- 23.3 and 125.3 +/- 25.3 beats/min (P = .051) in ischemic and nonischemic patients, respectively. We devised the equation HRmax = 168 - 0.76 x age (R-2 = 0.095; P = .007) for ischemic HF patients, but there was no significant relationship between age and HRmax in nonischemic HF patients (R-2 = 0.006; P = NS). Conclusions: Our study suggests that equations to estimate HRmax should consider the cause of HF. (J Cardiac Fail 2012;18:831-836)
Resumo:
Human Parvovirus B19 (B19V) is a recognized cause of life-threatening conditions among patients with hemoglobinopathies. This study investigates B19V infection in patients with sickle cell disease and beta-thalassemia using different experimental approaches. A total of 183 individuals (144 with sickle cell disease and 39 with beta-thalassemia major) and 100 healthy blood donors were examined for B19V using anti-B19V IgG enzyme immunoassay, quantitative PCR, DNA sequencing, and phylogenetic analysis. Viremia was documented in 18.6% of patients and 1% of donors, and was generally characterized by low viral load (VL); however, acute infections were also observed. Anti-B19V IgG was detected in 65.9% of patients with sickle cell disease and in 60% of donors, whereas the patients with thalassemia exhibited relatively low seroreactivity. The seroprevalence varied among the different age groups. In patients, it progressively increased with age, whereas in donors it reached a plateau. Based on partial NS1 fragments, all isolates detected were classified as subgenotype 1A with a tendency to elicit genetically complex infections. Interestingly, quasispecies occurred in the plasma of not only patients but also donors with even higher heterogeneity. The partial NS1 sequence examined did not exhibit positive selection. Quantitation of B19V with a conservative probe is a technically and practically useful approach. The extensive spread of B19V subgenotype 1A in patients and donors and its recent introduction into the countryside of the Sao Paulo State, Brazil were demonstrated; however, it is difficult to establish a relationship between viral sequences and the clinical outcomes of the infection. J. Med. Virol. 84:16521665, 2012. (c) 2012 Wiley Periodicals, Inc.
MicroRNA miR-146b-5p regulates signal transduction of TGF-beta by repressing SMAD4 in thyroid cancer
Resumo:
MicroRNAs (miRNA) are small non-coding RNAs involved in post-transcriptional gene regulation that have crucial roles in several types of tumors, including papillary thyroid carcinoma (PTC). miR-146b-5p is overexpressed in PTCs and is regarded as a relevant diagnostic marker for this type of cancer. A computational search revealed that miR-146b-5p putatively binds to the 3' untranslated region (UTR) of SMAD4, an important member of the transforming growth factor beta (TGF-beta) signaling pathway. The TGF-beta pathway is a negative regulator of thyroid follicular cell growth, and the mechanism by which thyroid cancer cells evade its inhibitory signal remains unclear. We questioned whether the modulation of the TGF-beta pathway by miR-146b-5p can contribute to thyroid tumorigenesis. Luciferase reporter assay confirmed the direct binding of miR-146b-5p on the SMAD4 3'UTR. Specific inhibition of miR-146b-5p with a locked nucleic acid-modified anti-miR-146b oligonucleotide significantly increased SMAD4 levels in the human papillary carcinoma cell lines, TPC-1 and BCPAP. Moreover, suppression of miR-146b-5p increased the cellular response to the TGF-beta anti-proliferative signal, significantly decreasing the proliferation rate. The overexpression of miR-146b-5p in normal rat follicular PCCL3 cells decreased SMAD4 levels and disrupted TGF-beta signal transduction. MiR-146b-5p overexpression in PCCL3 cells also significantly increased cell proliferation in the absence of thyroid-stimulating hormone and conferred resistance to TGF-beta-mediated cell-cycle arrest. Additionally, the activation of thyroid most common oncogenes RET/PTC3 and BRAF in PCCL3 cells upregulated miR-146b-5p expression. Our results confirm the oncogenic role of miR-146b-5p in thyroid follicular cells and contribute to knowledge regarding the modulation of TGF-beta signal transduction by miRNAs in PTCs. Oncogene (2012) 31, 1910-1922; doi:10.1038/onc.2011.381; published online 29 August 2011