29 resultados para particle Markov chain Monte Carlo
Resumo:
The extrapolation chamber is a parallel-plate ionization chamber that allows variation of its air-cavity volume. In this work, an experimental study and MCNP-4C Monte Carlo code simulations of an ionization chamber designed and constructed at the Calibration Laboratory at IFEN to be used as a secondary dosimetry standard for low-energy X-rays are reported. The results obtained were within the international recommendations, and the simulations showed that the components of the extrapolation chamber may influence its response up to 11.0%. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
In this work, a Monte Carlo code was used to investigate the performance of different x-ray spectra in digital mammography, through a figure of merit (FOM), defined as FOM = CNR2/(D) over bar (g), with CNR being the contrast-to-noise ratio in image and (D) over bar (g) being the average glandular dose. The FOM was studied for breasts with different thicknesses t (2 cm <= t <= 8 cm) and glandular contents (25%, 50% and 75% glandularity). The anode/filter combinations evaluated were those traditionally employed in mammography (Mo/Mo, Mo/Rh, Rh/Rh), and a W anode combined with Al or K-edge filters (Zr, Mo, Rh, Pd, Ag, Cd, Sn), for tube potentials between 22 and 34 kVp. Results show that the W anode combined with K-edge filters provides higher values of FOM for all breast thicknesses investigated. Nevertheless, the most suitable filter and tube potential depend on the breast thickness, and for t >= 6 cm, they also depend on breast glandularity. Particularly for thick and dense breasts, a W anode combined with K-edge filters can greatly improve the digital technique, with the values of FOM up to 200% greater than that obtained with the anode/filter combinations and tube potentials traditionally employed in mammography. For breasts with t < 4 cm, a general good performance was obtained with the W anode combined with 60 mu m of the Mo filter at 24-25 kVp, while 60 mu m of the Pd filter provided a general good performance at 24-26 kVp for t = 4 cm, and at 28-30 and 29-31 kVp for t = 6 and 8 cm, respectively.
Resumo:
Using fixed node diffusion quantum Monte Carlo (FN-DMC) simulations and density functional theory (DFT) within the generalized gradient approximations, we calculate the total energies of the relaxed and unrelaxed neutral, cationic, and anionic aluminum clusters, Al-n (n = 1-13). From the obtained total energies, we extract the ionization potential and electron detachment energy and compare with previous theoretical and experimental results. Our results for the electronic properties from both the FN-DMC and DFT calculations are in reasonably good agreement with the available experimental data. A comparison between the FN-DMC and DFT results reveals that their differences are a few tenths of electron volt for both the ionization potential and the electron detachment energy. We also observe two distinct behaviors in the electron correlation contribution to the total energies from smaller to larger clusters, which could be assigned to the structural transition of the clusters from planar to three-dimensional occurring at n = 4 to 5.
Resumo:
The extension of Boltzmann-Gibbs thermostatistics, proposed by Tsallis, introduces an additional parameter q to the inverse temperature beta. Here, we show that a previously introduced generalized Metropolis dynamics to evolve spin models is not local and does not obey the detailed energy balance. In this dynamics, locality is only retrieved for q = 1, which corresponds to the standard Metropolis algorithm. Nonlocality implies very time-consuming computer calculations, since the energy of the whole system must be reevaluated when a single spin is flipped. To circumvent this costly calculation, we propose a generalized master equation, which gives rise to a local generalized Metropolis dynamics that obeys the detailed energy balance. To compare the different critical values obtained with other generalized dynamics, we perform Monte Carlo simulations in equilibrium for the Ising model. By using short-time nonequilibrium numerical simulations, we also calculate for this model the critical temperature and the static and dynamical critical exponents as functions of q. Even for q not equal 1, we show that suitable time-evolving power laws can be found for each initial condition. Our numerical experiments corroborate the literature results when we use nonlocal dynamics, showing that short-time parameter determination works also in this case. However, the dynamics governed by the new master equation leads to different results for critical temperatures and also the critical exponents affecting universality classes. We further propose a simple algorithm to optimize modeling the time evolution with a power law, considering in a log-log plot two successive refinements.
Resumo:
A detailed characterization of a X-ray Si(Li) detector was performed to obtain the energy dependence of efficiency in the photon energy range of 6.4 - 59.5 keV. which was measured and reproduced by Monte Carlo (MC) simulations. Significant discrepancies between MC and experimental values were found when lhe manufacturer parameters of lhe detector were used in lhe simulation. A complete Computerized Tomagraphy (CT) detector scan allowed to find the correct crystal dimensions and position inside the capsule. The computed efficiencies with the resulting detector model differed with the measured values no more than 10% in most of the energy range.
Resumo:
Self-assembly of poly(4-vynil-N-alkyl)pyridinium bromide with alkyl side chains of 2, 5, 7, 10, or 16 carbons from ethanolic solutions onto flat silica surfaces was studied by means of ellipsometry, atomic force microscopy (AFM), contact angle measurements, and sum-frequency generation (SFG) vibrational spectroscopy in the CH3 and CH2 stretch region. Ab initio quantum-chemical calculations on the N-alkylpyridinium side-group with restricted Hartree-Fock (RHF) method and 6-311G (d,p) basis set were C one to estimate the charge distribution along the pyridinium ring and the alkyl side-chain. SFG results showed that longer side chains promote the disorientation of the alkyl groups at the surface, corroborating with the contact angle values. AFM images revealed film homogeneity, regardless the alkyl side group. However, after 24 h contact with water, ringlike structures appeared on the film surfaces, when the polycation alkyl side chain had 7 or less carbons, and as the alkyl chain increased to 10 or 16 carbons, the films dewetted because the hydrophobic interactions prevailed over the electrostatic interactions between the pyridinium charged groups and the negatively charged SiO2 surface. Under acid conditions (HCl 0.1 mol.L-1), the film mean thickness values decreased up to 50% of original values when the alkyl side chains were ethyl or pentyl groups due to ion-pair disruption, but for longer groups they remained unchanged. Quantum-chemical optimization and Mulliken electron population showed that (i) from C2 to C15 the positive charge at the headgroup (HG) decreased 0.025, while the charge at combined HG + alpha-CH2 increased 0.037; and (ii) for C6 or longer, the alkyl side group presents a tilt in the geometry, moving away from the plane. Such effects summed up over the whole polymer chain give support to suggest that when the side chains are longer than 7 carbons, the hydrophobic interaction decreases film stability and increases acid resistance.
Resumo:
In this work we compared the estimates of the parameters of ARCH models using a complete Bayesian method and an empirical Bayesian method in which we adopted a non-informative prior distribution and informative prior distribution, respectively. We also considered a reparameterization of those models in order to map the space of the parameters into real space. This procedure permits choosing prior normal distributions for the transformed parameters. The posterior summaries were obtained using Monte Carlo Markov chain methods (MCMC). The methodology was evaluated by considering the Telebras series from the Brazilian financial market. The results show that the two methods are able to adjust ARCH models with different numbers of parameters. The empirical Bayesian method provided a more parsimonious model to the data and better adjustment than the complete Bayesian method.
Resumo:
Two versions of the threshold contact process ordinary and conservative - are studied on a square lattice. In the first, particles are created on active sites, those having at least two nearest neighbor sites occupied, and are annihilated spontaneously. In the conservative version, a particle jumps from its site to an active site. Mean-field analysis suggests the existence of a first-order phase transition, which is confirmed by Monte Carlo simulations. In the thermodynamic limit, the two versions are found to give the same results. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
The ability to entrap drugs within vehicles and subsequently release them has led to new treatments for a number of diseases. Based on an associative phase separation and interfacial diffusion approach, we developed a way to prepare DNA gel particles without adding any kind of cross-linker or organic solvent. Among the various agents studied, cationic surfactants offered particularly efficient control for encapsulation and DNA release from these DNA gel particles. The driving force for this strong association is the electrostatic interaction between the two components, as induced by the entropic increase due to the release of the respective counter-ions. However, little is known about the influence of the respective counter-ions on this surfactant-DNA interaction. Here we examined the effect of different counter-ions on the formation and properties of the DNA gel particles by mixing DNA (either single-(ssDNA) or double-stranded (dsDNA)) with the single chain surfactant dodecyltrimethylammonium (DTA). In particular, we used as counter-ions of this surfactant the hydrogen sulfate and trifluoromethane sulfonate anions and the two halides, chloride and bromide. Effects on the morphology of the particles obtained, the encapsulation of DNA and its release, as well as the haemocompatibility of these particles are presented, using counter-ion structure and DNA conformation as controlling parameters. Analysis of the data indicates that the degree of counter-ion dissociation from the surfactant micelles and the polar/hydrophobic character of the counter-ion are important parameters in the final properties of the particles. The stronger interaction with amphiphiles for ssDNA than for dsDNA suggests the important role of hydrophobic interactions in DNA.
Resumo:
Measurements of the sphericity of primary charged particles in minimum bias proton-proton collisions at root s = 0.9, 2.76 and 7 TeV with the ALICE detector at the LHC are presented. The observable is measured in the plane perpendicular to the beam direction using primary charged tracks with p(T) > 0.5 GeV/c in vertical bar eta vertical bar < 0.8. The mean sphericity as a function of the charged particle multiplicity at mid-rapidity (N-ch) is reported for events with different p(T) scales ("soft" and "hard") defined by the transverse momentum of the leading particle. In addition, the mean charged particle transverse momentum versus multiplicity is presented for the different event classes, and the sphericity distributions in bins of multiplicity are presented. The data are compared with calculations of standard Monte Carlo event generators. The transverse sphericity is found to grow with multiplicity at all collision energies, with a steeper rise at low N-ch, whereas the event generators show an opposite tendency. The combined study of the sphericity and the mean p(T) with multiplicity indicates that most of the tested event generators produce events with higher multiplicity by generating more back-to-back jets resulting in decreased sphericity (and isotropy). The PYTHIA6 generator with tune PERUGIA-2011 exhibits a noticeable improvement in describing the data, compared to the other tested generators.
Resumo:
In this Letter we report the first results on pi(+/-), K-+/-, p, and (p) over bar production at midrapidity (vertical bar y vertical bar < 0.5) in central Pb-Pb collisions at root s(NN) = 2.76 TeV, measured by the ALICE experiment at the LHC. The p(T) distributions and yields are compared to previous results at root s(NN) = 200 GeV and expectations from hydrodynamic and thermal models. The spectral shapes indicate a strong increase of the radial flow velocity with root s(NN), which in hydrodynamic models is expected as a consequence of the increasing particle density. While the K/pi ratio is in line with predictions from the thermal model, the p/pi ratio is found to be lower by a factor of about 1.5. This deviation from thermal model expectations is still to be understood.
Resumo:
A measurement of the multi-strange Xi(-) and Omega(-) baryons and their antiparticles by the ALICE experiment at the CERN Large Hadron Collider (LHC) is presented for inelastic proton-proton collisions at a centre-of-mass energy of 7 TeV. The transverse momentum (p(T)) distributions were studied at mid-rapidity (vertical bar y vertical bar < 0.5) in the range of 0.6 < p(T) < 8.5 GeV/c Xi(-) for and Xi(+) baryons, and in the range of 0.8 < P-T < 5 GeV/c for Omega(-) and<(Omega)over bar>(+). Baryons and antibaryons were measured as separate particles and we find that the baryon to antibaryon ratio of both particle species is consistent with unity over the entire range of the measurement. The statistical precision of the current data has allowed us to measure a difference between the mean p(T) of Xi(-) ((Xi) over bar)(+) and Omega(-) ((Omega) over bar (+)). Particle yields, mean pi, and the spectra in the intermediate pi range are not well described by the PYTHIA Perugia 2011 tune Monte Carlo event generator, which has been tuned to reproduce the early LHC data. The discrepancy is largest for Omega(-)((Omega) over bar (+)). This PYTHIA tune approaches the pi spectra of Xi(-) and Xi(+) baryons below p(T) <0.85 GeV/c and describes the Xi(-) and Xi(+) spectra above p(T) > 6.0 GeV/c. We also illustrate the difference between the experimental data and model by comparing the corresponding ratios of (Omega(-) +(Omega) over bar (+))/(Xi(-) + Xi(+)) as a function of transverse mass. (C) 2012 CERN. Published by Elsevier B.V. All rights reserved.
Resumo:
The pulmonary crackling and the formation of liquid bridges are problems that for centuries have been attracting the attention of scientists. In order to study these phenomena, it was developed a canonical cubic lattice-gas like model to explain the rupture of liquid bridges in lung airways [A. Alencar et al., 2006, PRE]. Here, we further develop this model and add entropy analysis to study thermodynamic properties, such as free energy and force. The simulations were performed using the Monte Carlo method with Metropolis algorithm. The exchange between gas and liquid particles were performed randomly according to the Kawasaki dynamics and weighted by the Boltzmann factor. Each particle, which can be solid (s), liquid (l) or gas (g), has 26 neighbors: 6 + 12 + 8, with distances 1, √2 and √3, respectively. The energy of a lattice's site m is calculated by the following expression: Em = ∑k=126 Ji(m)j(k) in witch (i, j) = g, l or s. Specifically, it was studied the surface free energy of the liquid bridge, trapped between two planes, when its height is changed. For that, was considered two methods. First, just the internal energy was calculated. Then was considered the entropy. It was fond no difference in the surface free energy between this two methods. We calculate the liquid bridge force between the two planes using the numerical surface free energy. This force is strong for small height, and decreases as the distance between the two planes, height, is increased. The liquid-gas system was also characterized studying the variation of internal energy and heat capacity with the temperature. For that, was performed simulation with the same proportion of liquid and gas particle, but different lattice size. The scale of the liquid-gas system was also studied, for low temperature, using different values to the interaction Jij.
Resumo:
We present a one-dimensional nonlocal hopping model with exclusion on a ring. The model is related to the Raise and Peel growth model. A nonnegative parameter u controls the ratio of the local backwards and nonlocal forwards hopping rates. The phase diagram, and consequently the values of the current, depend on u and the density of particles. In the special case of half-lling and u = 1 the system is conformal invariant and an exact value of the current for any size L of the system is conjectured and checked for large lattice sizes in Monte Carlo simulations. For u > 1 the current has a non-analytic dependence on the density when the latter approaches the half-lling value.