51 resultados para mitochondria kidney
Resumo:
Campos R, Shimizu MH, Volpini RA, de Bragan a AC, Andrade L, Lopes FD, Olivo C, Canale D, Seguro AC. N-acetylcysteine prevents pulmonary edema and acute kidney injury in rats with sepsis submitted to mechanical ventilation. Am J Physiol Lung Cell Mol Physiol 302: L640-L650, 2012. First published January 20, 2012; doi: 10.1152/ajplung.00097.2011.-Sepsis is a common cause of acute kidney injury (AKI) and acute lung injury. Oxidative stress plays as important role in such injury. The aim of this study was to evaluate the effects that the potent antioxidant N-acetylcysteine (NAC) has on renal and pulmonary function in rats with sepsis. Rats, treated or not with NAC (4.8 g/l in drinking water), underwent cecal ligation and puncture (CLP) 2 days after the initiation of NAC treatment, which was maintained throughout the study. At 24 h post-CLP, renal and pulmonary function were studied in four groups: control, control + NAC, CLP, and CLP + NAC. All animals were submitted to low-tidal-volume mechanical ventilation. We evaluated respiratory mechanics, the sodium cotransporters Na-K-2Cl (NKCC1) and the alpha-subunit of the epithelial sodium channel (alpha-ENaC), polymorphonuclear neutrophils, the edema index, oxidative stress (plasma thiobarbituric acid reactive substances and lung tissue 8-isoprostane), and glomerular filtration rate. The CLP rats developed AKI, which was ameliorated in the CLP + NAC rats. Sepsis-induced alterations in respiratory mechanics were also ameliorated by NAC. Edema indexes were lower in the CLP + NAC group, as was the wet-to-dry lung weight ratio. In CLP + NAC rats, alpha-ENaC expression was upregulated, whereas that of NKCC1 was downregulated, although the difference was not significant. In the CLP + NAC group, oxidative stress was significantly lower and survival rates were significantly higher than in the CLP group. The protective effects of NAC (against kidney and lung injury) are likely attributable to the decrease in oxidative stress, suggesting that NAC can be useful in the treatment of sepsis.
Resumo:
Ischemia/reperfusion (I/R) injury remains a major cause of graft dysfunction, which impacts short- and long-term follow-up. Hyperbaric oxygen therapy (HBO), through plasma oxygen transport, has been currently used as an alternative treatment for ischemic tissues. The aim of this study was to analyze the effects of HBO on kidney I/R injury model in rats, in reducing the harmful effect of I/R. The renal I/R model was obtained by occluding bilateral renal pedicles with nontraumatic vascular clamps for 45 minutes, followed by 48 hours of reperfusion. HBO therapy was delivered an hypebaric chamber (2.5 atmospheres absolute). Animals underwent two sessions of 60 minutes each at 6 hours and 20 hours after initiation of reperfusion. Male Wistar rats (n = 38) were randomized into four groups: sham, sham operated rats; Sham+HBO, sham operated rats exposed to HBO; I/R, animals submitted to I/R; and I/R+HBO, I/R rats exposed to HBO. Blood, urine, and kidney tissue were collected for biochemical, histologic, and immunohistochemical analyses. The histopathological evaluation of the ischemic injury used a grading scale of 0 to 4. HBO attenuated renal dysfunction after ischemia characterized by a significant decrease in blood urea nitrogen (BUN), serum creatinine, and proteinuria in the I/R+HBO group compared with I/R alone. In parallel, tubular function was improved resulting in significantly lower fractional excretions of sodium and potassium. Kidney sections from the I/R plus HBO group showed significantly lower acute kidney injury scores compared with the I/R group. HBO treatment significantly diminished proliferative activity in I/R (P < .05). There was no significant difference in macrophage infiltration or hemoxygenase-1 expression. In conclusion, HBO attenuated renal dysfunction in a kidney I/R injury model with a decrease in BUN, serum creatinine, proteinuria, and fractional excretion of sodium and potassium, associated with reduced histological damage.
Resumo:
Introduction. Posttransplant thrombotic microangiopathy (TMA)/hemolytic uremic syndrome (HUS) can occur as a recurrent or de novo disease. Methods. A retrospective single-center observational study was applied in order to examine the incidence and outcomes of de novo TMA/HUS among transplantations performed between 2000 and 2010. Recurrent HUS or antibody-mediated rejections were excluded. Results. Seventeen (1.1%) among 1549 kidney transplant recipients fulfilled criteria for de novo TMA. The mean follow-up was 572 days (range, 69-1769). Maintenance immunosuppression was prednisone, tacrolimus (TAC), and mycophenolic acid in 14 (82%) patients. Mean age at onset was 40 +/- 15 years, and serum creatinine was 6.1 +/- 4.1 mg/dL. TMA occurred at a median of 25 days (range, 1-1755) after transplantation. Nine (53%) patients developed TMA within 1 month of transplantation and only 12% after 1 year. Clinical features were anemia (hemoglobin < 10 g/dL) in 9 (53%) patients, thrombocytopenia in 7 (41%), and increased lactate dehydrogenase in 12 (70%). Decreased haptoglobin was observed in 64% and schistocytes in 35%. Calcineurin inhibitor (CM) withdrawal or reduction was the first step in the management of 10/15 (66%) patients, and 6 (35%) received fresh frozen plasma (FFP) and/or plasmapheresis. TAC was successfully reintroduced in six patients after a median of 17 days. Eight (47%) patients needed dialytic support after TMA diagnosis and 75% remained on dialysis. At 4 years of follow-up, death-censored graft survival was worse for TMA group (43.0% versus 85.6%, log-rank = 0.001; hazard ratio = 3.74) and there was no difference in patient survival (53.1% versus 82.2%, log-rank = 0.24). Conclusion. De novo TMA after kidney transplantation is a rare but severe condition with poor graft outcomes. This syndrome may not be fully manifested, and clinical suspicion is essential for early diagnosis and treatment, based mainly in CM withdrawal and FFP infusions and/or plasmapheresis.
Resumo:
de Souza ACCP, Volpini RA, Shimizu MH, Sanches TR, Camara NOS, Semedo P, Rodrigues CE, Seguro AC, Andrade L. Erythropoietin prevents sepsis-related acute kidney injury in rats by inhibiting nuclear factor-kappa B and upregulating endothelial nitric oxide synthase. Am J Physiol Renal Physiol 302: F1045-F1054, 2012. First published January 11, 2012; doi:10.1152/ajprenal.00148.2011.-The pathophysiology of sepsis involves complex cytokine and inflammatory mediator networks, a mechanism to which NF-kappa B activation is central. Downregulation of endothelial nitric oxide synthase (eNOS) contributes to sepsis-induced endothelial dysfunction. Erythropoietin (EPO) has emerged as a major tissue-protective cytokine in the setting of stress. We investigated the role of EPO in sepsis-related acute kidney injury using a cecal ligation and puncture (CLP) model. Wistar rats were divided into three primary groups: control (sham-operated); CLP; and CLP + EPO. EPO (4,000 IU/kg body wt ip) was administered 24 and 1 h before CLP. Another group of rats received N-nitro-L-arginine methyl ester (L-NAME) simultaneously with EPO administration (CLP + EPO + L-NAME). A fifth group (CLP + EPOtreat) received EPO at 1 and 4 h after CLP. At 48 h postprocedure, CLP + EPO rats presented significantly higher inulin clearance than did CLP and CLP + EPO + L-NAME rats; hematocrit levels, mean arterial pressure, and metabolic balance remained unchanged in the CLP + EPO rats; and inulin clearance was significantly higher in CLP + EPOtreat rats than in CLP rats. At 48 h after CLP, creatinine clearance was significantly higher in the CLP + EPO rats than in the CLP rats. In renal tissue, pre-CLP EPO administration prevented the sepsis-induced increase in macrophage infiltration, as well as preserving eNOS expression, EPO receptor (EpoR) expression, IKK-alpha activation, NF-kappa B activation, and inflammatory cytokine levels, thereby increasing survival. We conclude that this protection, which appears to be dependent on EpoR activation and on eNOS expression, is attributable, in part, to inhibition of the inflammatory response via NF-kappa B downregulation.
Resumo:
Background: Matrix metalloproteinases (MMPs) play important roles in the pathophysiology of renal diseases, and imbalanced MMP-2 and its endogenous inhibitor (the tissue inhibitor of metalloproteinases-2; TIMP-2) are implicated in the vascular alterations of end-stage kidney disease (ESKD) patients. We have examined whether MMP-2 gene polymorphisms and haplotypes modify MMP-2 and TIMP-2 levels in ESKD patients as well as the effects of hemodialysis on the concentrations of these biomarkers. Methods: We determined MMP-2 and TIMP-2 plasma levels by gelatin zymography and ELISA, respectively, in 98 ESKD patients and in 38 healthy controls. Genotypes for two relevant MMP-2 polymorphisms (C-T-1306 and C-T-735 in the promoter region) were determined by TaqMan (R) allele discrimination assay and real-time polymerase chain reaction. The software program PHASE 2.1 was used to estimate the haplotype frequencies. Results: We found increased plasma MMP-2 and TIMP-2 levels in ESKD patients compared to controls (p<0.05), and hemodialysis decreased MMP-2 (but not TIMP-2) levels (p<0.05). The T allele for the C-T-735 polymorphism and the C-T haplotype were associated with higher MMP-2 (but not TIMP-2) levels (p<0.05), whereas the C-T-1306 had no effects. Hemodialysis decreased MMP-2 (but not TIMP-2) levels independently of MMP-2 genotypes or haplotypes (p<0.05). Conclusions: MMP-2 genotypes or haplotypes modify MMP-2 levels in ESKD patients, and may help to identify patients with increased MMP-2 activity in plasma. Hemodialysis reduces MMP-2 levels independently of MMP-2 genetic variants. Copyright (C) 2012 S. Karger AG, Basel
Resumo:
The aim of this study is to show histological and immunofluorescence analysis of renal parenchyma of agoutis affected by gentamicin-induced renal disease after the infusion of bone marrow mononuclear cells (BMMC) stained with Hoechst (R). Nine agouti's males were divided into three groups: Test group (TG): renal disease by gentamicin induced (n = 3), cell therapy group (CTG): renal disease by gentamicin induced and BMMC infusion (n = 3), and control group (CG): nonrenal disease and BMMC infusion (n = 3). TG and CTG were submitted to the protocol of renal disease induction using weekly application of gentamicin sulfate for 4 months. CG and CTG received a 1 X 108 BMMC stained with Hoechst and were euthanized for kidney examination 21 days after BMMC injection and samples were collected for histology and immunofluorescence analysis. Histological analysis demonstrated typical interstitial lesions in kidney similarly to human disease, as tubular necrosis, glomerular destruction, atrophy tubular, fibrotic areas, and collagen deposition. We conclude that histological analysis suggest a positive application of agouti's as a model for a gentamicin inducing of kidney disease, beyond the immunofluorescence analysis suggest a significant migration of BMMC to sites of renal injury in CTG. Microsc. Res. Tech., 2012. (c) 2011 Wiley Periodicals, Inc.
Resumo:
OBJECTIVE: Poor sleep quality is one of the factors that adversely affects patient quality of life after kidney transplantation, and sleep disorders represent a significant cardiovascular risk factor. The objective of this study was to investigate the prevalence of changes in sleep quality and their outcomes in kidney transplant recipients and analyze the variables affecting sleep quality in the first years after renal transplantation. METHODS: Kidney transplant recipients were evaluated at two time points after a successful transplantation: between three and six months (Phase 1) and between 12 and 15 months (Phase 2). The following tools were used for assessment: the Pittsburgh Sleep Quality Index; the quality of life questionnaire Short-Form-36; the Hospital Anxiety and Depression scale; the Karnofsky scale; and assessments of social and demographic data. The prevalence of poor sleep was 36.7% in Phase 1 and 38.3% in Phase 2 of the study. RESULTS: There were no significant differences between patients with and without changes in sleep quality between the two phases. We found no changes in sleep patterns throughout the study. Both the physical and mental health scores worsened from Phase 1 to Phase 2. CONCLUSION: Sleep quality in kidney transplant recipients did not change during the first year after a successful renal transplantation.
Resumo:
Purpose: To analyze the outcome of deceased donor recipients given priority in allocation due to lack of access for dialysis and compare this data to the one obtained from non-prioritized deceased donor kidney transplant recipients. Materials and Methods: we reviewed electronic charts of 31 patients submitted to kidney transplantation that were given priority in transplantation program due to lack of access for dialysis from January 2005 to December 2008. Immunological and surgical complications rates, and grafts and patients survival rates were analyzed. These data were compared to those obtained from 100 regular patients who underwent kidney transplantation without allocation priority during the same period. Results: Overall surgical complication rate was 25.8% and 27% in the patients with priority in allocation and in the non-prioritized patients, respectively. There was no statistical significant difference for surgical complications (p = 1.0), immunological complications (p = 0.21) and graft survival (p = 0.19) rates between the groups. However, patient survival rate was statistically significant worse in prioritized patients (p = 0.05). Conclusions: patients given priority in allocation owing to lack of access for dialysis have higher mortality rate when compared to those non-prioritized.
Resumo:
Glutamine is an essential nutrient for cancer cell proliferation, especially in the context of citric acid cycle anaplerosis. In this manuscript we present results that collectively demonstrate that, of the three major mammalian glutaminases identified to date, the lesser studied splice variant of the gene gls, known as Glutaminase C (GAC), is important for tumor metabolism. We show that, although levels of both the kidney-type isoforms are elevated in tumor vs. normal tissues, GAC is distinctly mitochondrial. GAC is also most responsive to the activator inorganic phosphate, the content of which is supposedly higher in mitochondria subject to hypoxia. Analysis of X-ray crystal structures of GAC in different bound states suggests a mechanism that introduces the tetramerization-induced lifting of a "gating loop" as essential for the phosphate-dependent activation process. Surprisingly, phosphate binds inside the catalytic pocket rather than at the oligomerization interface. Phosphate also mediates substrate entry by competing with glutamate. A greater tendency to oligomerize differentiates GAC from its alternatively spliced isoform and the cycling of phosphate in and out of the active site distinguishes it from the liver-type isozyme, which is known to be less dependent on this ion.
Resumo:
Nitrosyl ruthenium complexes are promising NO donor agents with numerous advantages for the biologic applications of NO. We have characterized the NO release from the nitrosyl ruthenium complex [Ru(NO2)(bpy)(2)(4-pic)](+) (I) and the reactive oxygen/nitrogen species (ROS/RNS)-mediated NO actions on isolated rat liver mitochondria. The results indicated that oxidation of mitochondrial NADH promotes NO release from (I) in a manner mediated by NO2 formation (at neutral pH) as in mammalian cells, followed by an oxygen atom transfer mechanism (OAT). The NO released from (I) uncoupled mitochondria at low concentrations/incubation times and inhibited the respiratory chain at high concentrations/incubation times. In the presence of ROS generated by mitochondria NO gave rise to peroxynitrite, which, in turn, inhibited the respiratory chain and oxidized membrane protein-thiols to elicit a Ca2+-independent mitochondrial permeability transition; this process was only partially inhibited by cyclosporine-A, almost fully inhibited by the thiol reagent N-ethylmaleimide (NEM) and fully inhibited by the NO scavenger 2-(4-carboxyphenyl)-4,45,5-tetramethylimidazoline-1-oxyl-3-oxide (cPTIO). These actions correlated with the release of cytochrome c from isolated mitochondria as detected by Western blotting analysis. These events, typically involved in cell necrosis and/or apoptosis denote a potential specific action of (I) and analogs against tumor cells via mitochondria-mediated processes. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
The usefulness of stress myocardial perfusion scintigraphy for cardiovascular (CV) risk stratification in chronic kidney disease remains controversial. We tested the hypothesis that different clinical risk profiles influence the test. We assessed the prognostic value of myocardial scintigraphy in 892 consecutive renal transplant candidates classified into four risk groups: very high (aged epsilon 50 years, diabetes and CV disease), high (two factors), intermediate (one factor) and low (no factor). The incidence of CV events and death was 20 and 18, respectively (median follow-up 22 months). Altered stress testing was associated with an increased probability of cardiovascular events only in intermediate-risk (one risk factor) patients [30.3 versus 10, hazard ratio (HR) 2.37, confidence interval (CI) 1.693.33, P 0.0001]. Low-risk patients did well regardless of scan results. In patients with two or three risk factors, an altered stress test did not add to the already increased CV risk. Myocardial scintigraphy was related to overall mortality only in intermediate-risk patients (HR 2.8, CI 1.55.1, P 0.007). CV risk stratification based on myocardial stress testing is useful only in patients with just one risk factor. Screening may avoid unnecessary testing in 60 of patients, help stratifying for risk of events and provide an explanation for the inconsistent performance of myocardial scintigraphy.
Resumo:
Background: The causes of death on long-term mortality after acute kidney injury (AKI) have not been well studied. The purpose of the study was to evaluate the role of comorbidities and the causes of death on the long-term mortality after AKI. Methodology/Principal Findings: We retrospectively studied 507 patients who experienced AKI in 2005-2006 and were discharged free from dialysis. In June 2008 (median: 21 months after AKI), we found that 193 (38%) patients had died. This mortality is much higher than the mortality of the population of Sao Paulo City, even after adjustment for age. A multiple survival analysis was performed using Cox proportional hazards regression model and showed that death was associated with Khan's index indicating high risk [adjusted hazard ratio 2.54 (1.38-4.66)], chronic liver disease [1.93 (1.15-3.22)], admission to non-surgical ward [1.85 (1.30-2.61)] and a second AKI episode during the same hospitalization [1.74 (1.12-2.71)]. The AKI severity evaluated either by the worst stage reached during AKI (P=0.20) or by the need for dialysis (P=0.12) was not associated with death. The causes of death were identified by a death certificate in 85% of the non-survivors. Among those who died from circulatory system diseases (the main cause of death), 59% had already suffered from hypertension, 34% from diabetes, 47% from heart failure, 38% from coronary disease, and 66% had a glomerular filtration rate <60 previous to the AKI episode. Among those who died from neoplasms, 79% already had the disease previously. Conclusions: Among AKI survivors who were discharged free from dialysis the increased long-term mortality was associated with their pre-existing chronic conditions and not with the severity of the AKI episode. These findings suggest that these survivors should have a medical follow-up after hospital discharge and that all efforts should be made to control their comorbidities.
Resumo:
PURPOSE: To investigate the effect of cilostazol, in kidney and skeletal muscle of rats submitted to acute ischemia and reperfusion. METHODS: Fourty three animals were randomized and divided into two groups. Group I received a solution of cilostazol (10 mg/Kg) and group II received saline solution 0.9% (SS) by orogastric tube after ligature of the abdominal aorta. After four hours of ischemia the animals were divided into four subgroups: group IA (Cilostazol): two hours of reperfusion. Group IIA (SS): two hours of reperfusion. Group IB (Cilostazol): six hours of reperfusion. Group IIB (SS) six hours of reperfusion. After reperfusion, a left nephrectomy was performed and removal of the muscles of the hind limb. The histological parameters were studied. In kidney cylinders of myoglobin, vacuolar degeneration and acute tubular necrosis. In muscle interstitial edema, inflammatory infiltrate, hypereosinophilia fiber, cariopicnose and necrosis. Apoptosis was assessed by immunohistochemistry for cleaved caspase-3 and TUNEL. RESULTS: There was no statistically significant difference between groups. CONCLUSION: Cilostazol had no protective effect on the kidney and the skeletal striated muscle in rats submitted to acute ischemia and reperfusion in this model.
Resumo:
Objectives The aim of this work was to study the effects of P. major against the oxidative damage of isolated rat liver mitochondria. Methods The extracts were obtained using methanol (MeOH), ethyl acetate (EAc), dichloromethane (DCM), and hexane (Hex) as solvents. Key findings Hex, DCM, and EAc totally, and MeOH partially, inhibited ROS generation and lipid peroxidation of membranes induced by Fe2+ or t-BOOH. However, only MeOH was able to prevent the t-BOOH-induced glutathione and NAD(P)H oxidation. All extracts chelated Fe2+ and reduced DPP Hradicals. EPR analysis revealed that P. major exhibited potent scavenger activity for hydroxyl radicals. Conclusions The potent antioxidant activity exhibited by P. major was able to prevent oxidative mitochondrial damage, contributing to the understanding of its hepatoprotective action against ROS-mediated toxicity.
Resumo:
Introduction: While some studies show that patients submitted to radical nephrectomy have a higher risk of developing chronic kidney disease (CKD), some studies report that carefully selected living kidney donors do not present a higher risk for CKD. Here, we aim to study predictive factors of CKD after radical nephrectomy. Materials and Methods: Between January 2006 to January 2010, 107 patients submitted to radical nephrectomy for cortical renal tumors at our institution were enrolled in this study. Demographic data were recorded, modified Charlson-Romano Index was calculated, and creatinine clearance was estimated using abbreviated Modification of Diet in Renal Disease (MDRD) study equation. Pathological characteristics, surgical access and surgical complications were also reviewed. The end-point of the current study was new onset estimated glomerular filtration rate (eGFR) less than 60 and less than 45 mL/minute/1.73 m(2). Results: Age, preoperative eGFR, Charlson-Romano Index and hypertension were predictive factors of renal function loss, when the end-point considered was eGFR lower than 60 mL/minute/1.73 m(2). Age and preoperative eGFR were predictive factors of renal function loss, when the end-point considered was eGFR lower than 45 mL/minute/1.73 m2. Moreover, each year older increased 1.1 times the risk of eGFR lower than 60 and 45 mL/minute/1.73 m(2). After multivariate logistic regression, only age remained as an independent predictive factor of eGFR loss. Conclusion: Age is an independent predictive factor of GFR loss for patients submitted to radical nephrectomy for cortical renal tumors.