43 resultados para immune response cells
Resumo:
INTRODUCTION: With the aim of searching genetic factors associated with the response to an immune treatment based on autologous monocyte-derived dendritic cells pulsed with autologous inactivated HIV, we performed exome analysis by screening more than 240,000 putative functional exonic variants in 18 HIV-positive Brazilian patients that underwent the immune treatment. METHODS: Exome analysis has been performed using the ILLUMINA Infinium HumanExome BeadChip. zCall algorithm allowed us to recall rare variants. Quality control and SNP-centred analysis were done with GenABEL R package. An in-house implementation of the Wang method permitted gene-centred analysis. RESULTS: CCR4-NOT transcription complex, subunit 1 (CNOT1) gene (16q21), showed the strongest association with the modification of the response to the therapeutic vaccine (p=0.00075). CNOT1 SNP rs7188697 A/G was significantly associated with DC treatment response. The presence of a G allele indicated poor response to the therapeutic vaccine (p=0.0031; OR=33.00; CI=1.74-624.66), and the SNP behaved in a dominant model (A/A vs. A/G+G/G p=0.0009; OR=107.66; 95% CI=3.85-3013.31), being the A/G genotype present only in weak/transient responders, conferring susceptibility to poor response to the immune treatment. DISCUSSION: CNOT1 is known to be involved in the control of mRNA deadenylation and mRNA decay. Moreover, CNOT1 has been recently described as being involved in the regulation of inflammatory processes mediated by tristetraprolin (TTP). The TTP-CCR4-NOT complex (CNOT1 in the CCR4-NOT complex is the binding site for TTP) has been reported as interfering with HIV replication, through post-transcriptional control. Therefore, we can hypothesize that genetic variation occurring in the CNOT1 gene could impair the TTP-CCR4-NOT complex, thus interfering with HIV replication and/or host immune response. CONCLUSIONS: Being aware that our findings are exclusive to the 18 patients studied with a need for replication, and that the genetic variant of CNOT1 gene, localized at intron 3, has no known functional effect, we propose a novel potential candidate locus for the modulation of the response to the immune treatment, and open a discussion on the necessity to consider the host genome as another potential variant to be evaluated when designing an immune therapy study
Resumo:
The effects of spatial competition among colonial marine organisms are often evident in the contact zones between colonies. These effects are especially pronounced when the interaction results in overgrowth or necrosis of one of the competitors. Ascidians, one of the dominant taxonomic groups in subtidal sessile communities, have specialized morula cells that provide a defense against microbial infections. Injuries resulting from interspecific competitive interactions might also act as a stimulus for this defensive mechanism. Therefore, we expected to see the recruitment of morula cells in tissues near competitor contact zones. To test the hypothesis that spatial competition elicits this immune response, we placed colonies of the ascidian Didemnum perlucidum from southeastern Brazil in four different types of competitive situations: (1) overgrowth of the competitor, (2) stand-off interactions, (3) overgrowth by the competitor, and (4) free of competitors. Our results indicate that competitive interactions increase the population of morula cells in contact zones, as more cells were observed in interactions that resulted in the overgrowth of individuals of D. perlucidum, and fewer cells were observed in colonies that were free of competitors. We identified the defensive function of the morula cells by showing the presence of the enzyme phenoloxidase within its vacuoles. Phenoloxidase is a widespread enzyme among animals and plants, and is frequently used in defense by synthesizing toxic quinones from polyphenol substrates. This is the first study to document the presence of morula cells in didemnid ascidians and the mobilization of these cells by spatial competition by heterospecifics, and one of the first studies to identify phenoloxidase activity in morula cells.
Resumo:
Objective: NALP3-inflammasome is an innate mechanism, alternative to type-1 interferon, which is able to recognize nucleic acids and viruses in the cytoplasm and to induce pro-inflammatory response. Here, we hypothesized the involvement of inflammasome in the early defense against HIV-1 and in the full maturation of dendritic cells: for this, we evaluated the response of dendritic cells pulsed with HIV-1 in terms of inflammasome activation in healthy donors. Moreover, inflammasome response to HIV was evaluated in HIV-infected individuals. Design and methods: Monocyte-derived dendritic cells isolated from 20 healthy individuals (HC-DC) and 20 HIV-1-infected patients (HIV-DC) were pulsed with alditrithiol-2-inactivated HIV-1. We then analyzed inflammasome genes expression and interleukin-1 beta (IL-1 beta) secretion. Results: In HC-DC, HIV-1 induced higher NLRP3/NALP3 mRNA expression compared with other inflammasome genes such as NALP1/NLRP1 or IPAF/NLRC4 (P < 0.001). This augmented expression was accompanied by CASP1-increased and IL1B-increased mRNA levels and by a significant increment of IL-1b secretion (P < 0.05). Otherwise, HIV-1 failed to activate inflammasome and cytokine production in HIV-DC. HIV-DC showed an increased NLRP3/NALP3 basal expression, suggesting a chronic inflammatory profile of patients' immune cells. Conclusion: HIV-1 was able to induce a NALP3-inflammasome response in healthy individuals, indicating that this inflammasome could play a role in the first steps of HIV-1 infection; the consequent inflammatory process may be important for directing host immune response against the virus and/or disease progression. HIV-DC seemed to be chronically activated, but unresponsive against pathogens. Our findings could be of interest considering the ongoing research about dendritic cell manipulation and therapeutic strategies for AIDS involving dendritic cell-based immune-vaccines. (C) 2011 Wolters Kluwer Health vertical bar Lippincott Williams & Wilkins
Resumo:
Background: Patients with X-linked hyper-IgM syndrome (X-HIGM) due to CD40 ligand (CD40L) mutations are susceptible to fungal pathogens; however, the underlying susceptibility mechanisms remain poorly understood. Objective: To determine whether monocyte-derived dendritic cells (DCs) from patients with X-HIGM exhibit normal responses to fungal pathogens. Methods: DCs from patients and controls were evaluated for the expression of costimulatory (CD80 and CD86) and MHC class II molecules and for their ability to produce IL-12 and IL-10 in response to Candida albicans and Paracoccidioides brasiliensis. We also evaluated the ability of C albicans- and P brasiliensis-pulsed mature DCs to induce autologous T-cell proliferation, generation of T helper (T-H) 17 cells, and production of IFN-gamma, TGF-beta, IL-4, IL-5, and IL-17. Results: Immature DCs from patients with X-HIGM showed reduced expression of CD80, CD86, and HLA-DR, which could be reversed by exogenous trimeric soluble CD40L. Most important, mature DCs from patients with X-HIGM differentiated by coculturing DCs with fungi secreted minimal amounts of IL-12 but substantial amounts of IL-10 compared with mature DCs from normal individuals. Coculture of mature DCs from X-HIGM patients with autologous T cells led to low IFN-g production, whereas IL-4 and IL-5 production was increased. T-cell proliferation and IL-17 secretion were normal. Finally, in vitro incubation with soluble CD40L reversed the decreased IL-12 production and the skewed T-H(2) pattern response. Conclusion: Absence of CD40L during monocyte/DC differentiation leads to functional DC abnormalities, which may contribute to the susceptibility to fungal infections in patients with X-HIGM. (J Allergy Clin Immunol 2012; 129: 778-86.)
Resumo:
Squamous cell carcinoma (SCC) constitutes a microenvironment that could modulate the antitumor immune response. Also, tumor-infiltrating lymphocytes are believed to play complex regulatory roles in antitumor immunity against SCC. The presence of regulatory T cells (Tregs) has been associated with the suppression of tumor-reactive T cells. However, the underlying mechanism for this T cell dysfunction is not clear. We used a multistage model of SCC to examine the role of Treg cells during tumor development. 7,12-dimethylbenz[a]-anthracene/phorbol 12-myristate 13-acetate treatment and systemic depletion of Treg cells using an anti-CD25 monoclonal antibody (PC61) resulted in a decrease in the number and incidence of papilloma. Furthermore, CD25 depletion increased the proportion of CD8(+) and CD4(+) T cells that were isolated from tumor lesions. The levels of interleukin (IL)-1 beta, IL-10, IL-12, IL-13, interferon-gamma, transforming growth factor-beta and tumor necrosis factor-alpha, but not IL-17, were increased in the tumor microenvironment after Treg depletion. Therefore, our results indicated involvement of CD25(+) T cells in SCC development and in the suppression of the inflammatory immune response.
Resumo:
Melatonin has been reported to play a fundamental role in T-cell immunoregulation. Control of Trypanosome cruzi parasitism during the acute phase of infection is considered to be critically dependent on direct macrophage activation by cytokines. The aim of this work was to evaluate the influence of exogenous melatonin treatment and the influences exerted by sexual hormones during the acute phase of the experimental Chagas' disease in rats. With melatonin treatment, orchiectomized animals (CMOR and IMOR) displayed the highest concentrations of IFN-gamma and TNF-alpha. On the 7th day post-infection, untreated and treated orchiectomized animals (IOR and IMOR) showed an enhanced number of peritoneal macrophages. Nitric oxide levels were also increased in untreated and treated orchiectomized (IOR and IMOR) when compared to the other groups, with or without LPS. Our data suggest that melatonin therapy associated with orchiectomy induced a stimulating effect on the immune response to the parasite. (c) 2012 Published by Elsevier Ltd.
Resumo:
Aims: Development of effective immune-based therapies for patients with non-small-cell lung carcinoma (NSCLC) depends on an accurate characterization of complex interactions that occur between immune cells and the tumour environment. Methods and results: Innate and adaptive immune responses were evaluated in relation to prognosis in 65 patients with surgically excised NSCLC. Immunohistochemistry and morphometry were used to determine the abundance and distribution of immune cells. We found low numbers of immune cells and levels of cytokines in the tumour environment when compared with surrounding parenchyma. Smoking was associated inversely with the adaptive immune response and directly with innate immunity. We observed a prominent adaptive immune response in squamous cell carcinomas (SCC) but greater innate immune responses in adenocarcinomas and large cell carcinomas. Cox model analysis showed a low risk of death for smoking <41 packs/year, N-0 tambour stage, squamous carcinoma, CD4(+) > 16.81% and macrophages/monocytes >4.5%. Collectively, the data indicate that in NSCLC there is not a substantive local immune cell infiltrate within the tumour. Conclusion: Although immune cell infiltration is limited in NSCLC it appears to have an impact on prognosis and this may be of relevance for new immunotherapeutic approaches.
Resumo:
American tegumentary leishmaniasis (ATL) is a disease whose clinical features are strongly related to the type of immune response it induces. Herein we report an atypical presentation of cutaneous leishmaniasis in a woman with a severe and extensive sore located in her leg, and we describe the differences between the usual local immune response in ATL and the local immune response in this patient. We observed an intense inflammatory response characterized by Th1 cells and cytokines with conspicuous expression of Toll-like receptor 3 (TLR-3). Few parasites were present, but there was an extensive tissue damage. We also discuss the immunological factors that could be related to the atypical presentation.
Resumo:
Cytochemical localization of hydrogen peroxide-generating sites suggests NADPH (nicotinamide adenine dinucleotide 3-phosphate [ reduced form]) oxidase expression at the maternal-fetal interface. To explore this possibility, we have characterized the expression and activity of the NADPH oxidase complex in trophoblast cells during the postimplantation period. Implantation sites and ectoplacental cones (EPCs) from 7.5-gestational day embryos from CD1 mice were used as a source for expression analyses of NADPH oxidase catalytic and regulatory subunits. EPCs grown in primary culture were used to investigate the production of superoxide anion through dihydroxyethidium oxidation in confocal microscopy and immunohistochemical assays. NADPH subunits Cybb (gp91phox), Cyba (p22phox), Ncf4 (p40phox), Ncf1 (p47phox), Ncf2 (p67phox), and Rac1 were expressed by trophoblast cells. The fundamental subunits of membrane CYBB and cytosolic NCF2 were markedly upregulated after phorbol-12-myristate-13-acetate (PMA) treatment, as detected by quantitative real-time PCR, Western blotting, and immunohistochemistry. Fluorescence microscopy imaging showed colocalization of cytosolic and plasma membrane NADPH oxidase subunits mainly after PMA treatment, suggesting assembly of the complex after enzyme activation. Cultured EPCs produced superoxide in a NADPH-dependent manner, associating the NADPH oxidase-mediated superoxide production with postimplantation trophoblast physiology. NADPH-oxidase cDNA subunit sequencing showed a high degree of homology between the trophoblast and neutrophil isoforms of the oxidase, emphasizing a putative role for reactive oxygen species production in phagocytic activity and innate immune responses.
Resumo:
The innate and adaptive immune responses of dendritic cells (DCs) to enteroinvasive Escherichia coli (EIEC) infection were compared with DC responses to Shigella flexneri infection. EIEC triggered DCs to produce interleukin (IL)-10, IL-12 and tumour necrosis factor (TNF)-alpha, whereas S. flexneri induced only the production of TNF-alpha. Unlike S. flexneri, EIEC strongly increased the expression of toll like receptor (TLR)-4 and TLR-5 in DCs and diminished the expression of co-stimulatory molecules that may cooperate to inhibit CD4(+) T-lymphocyte proliferation. The inflammation elicited by EIEC seems to be related to innate immunity both because of the aforementioned results and because only EIEC were able to stimulate DC transmigration across polarised Caco-2 cell monolayers, a mechanism likely to be associated with the secretion of CC chemokine ligands (CCL) 20 and TNF-alpha. Understanding intestinal DC biology is critical to unravelling the infection strategies of EIEC and may aid in the design of treatments for infectious diseases.
Resumo:
5-lipoxygenase-derived products have been implicated in both the inhibition and promotion of chronic infection. Here, we sought to investigate the roles of endogenous 5-lipoxygenase products and exogenous leukotrienes during Histoplasma capsulatum infection in vivo and in vitro. 5-LO deficiency led to increased lung CFU, decreased nitric oxide production and a deficient primary immune response during active fungal infection. Moreover, H. capsulatum-infected 5-LO-/- mice showed an intense influx of neutrophils and an impaired ability to generate and recruit effector T cells to the lung. The fungal susceptibility of 5-LO-/- mice correlated with a lower rate of macrophage ingestion of IgG-H. capsulatum relative to WT macrophages. Conversely, exogenous LTB4 and LTC4 restored macrophage phagocytosis in 5-LO deficient mice. Our results demonstrate that leukotrienes are required to control chronic fungal infection by amplifying both the innate and adaptive immune response during histoplasmosis.
Resumo:
CD4(+) Foxp3(+) regulatory T cells inhibit the production of interferon-?, which is the major mediator of protection against Mycobacterium tuberculosis infection. In this study, we evaluated whether the protection conferred by three different vaccines against tuberculosis was associated with the number of spleen and lung regulatory T cells. We observed that after homologous immunization with the 65 000 molecular weight heat-shock protein (hsp 65) DNA vaccine, there was a significantly higher number of spleen CD4(+) Foxp3(+) cells compared with non-immunized mice. Heterologous immunization using bacillus Calmette Guerin (BCG) to prime and DNA-hsp 65 to boost (BCG/DNA-hsp 65) or BCG to prime and culture filtrate proteins (CFP)-CpG to boost (BCG/CFP-CpG) induced a significantly higher ratio of spleen CD4(+)/CD4(+) Foxp3(+) cells compared with non-immunized mice. In addition, the protection conferred by either the BCG/DNA-hsp 65 or the BCG/CFP-CpG vaccines was significant compared with the DNA-hsp 65 vaccine. Despite the higher ratio of spleen CD4(+)/CD4(+) Foxp3(+) cells found in BCG/DNA-hsp 65-immunized or BCG/CFP-CpG-immunized mice, the lungs of both groups of mice were better preserved than those of DNA-hsp 65-immunized mice. These results confirm the protective efficacy of BCG/DNA-hsp 65 and BCG/CFP-CpG heterologous prime-boost vaccines and the DNA-hsp 65 homologous vaccine. Additionally, the prime-boost regimens assayed here represent a promising strategy for the development of new vaccines to protect against tuberculosis because they probably induce a proper ratio of CD4(+) and regulatory (CD4(+) Foxp3(+)) cells during the immunization regimen. In this study, this ratio was associated with a reduced number of regulatory cells and no injury to the lungs.
Resumo:
Limited information is available regarding the modulation of genes involved in the innate host response to Paracoccidioides brasiliensis, the etiologic agent of paracoccidioidomycosis. Therefore, we sought to characterize, for the first time, the transcriptional profile of murine bone marrow-derived dendritic cells (DCs) at an early stage following their initial interaction with P. brasiliensis. DCs connect innate and adaptive immunity by recognizing invading pathogens and determining the type of effector T-cell that mediates an immune response. Gene expression profiles were analyzed using microarray and validated using real-time RT-PCR and protein secretion studies. A total of 299 genes were differentially expressed, many of which are involved in immunity, signal transduction, transcription and apoptosis. Genes encoding the cytokines IL-12 and TNF-alpha, along with the chemokines CCL22, CCL27 and CXCL10, were up-regulated, suggesting that P. brasiliensis induces a potent proinflammatory response in DCs. In contrast, pattern recognition receptor (PRR)-encoding genes, particularly those related to Toll-like receptors, were down-regulated or unchanged. This result prompted us to evaluate the expression profiles of dectin-1 and mannose receptor, two other important fungal PRRs that were not included in the microarray target cDNA sequences. Unlike the mannose receptor, the dectin-1 receptor gene was significantly induced, suggesting that this beta-glucan receptor participates in the recognition of P. brasiliensis. We also used a receptor inhibition assay to evaluate the roles of these receptors in coordinating the expression of several immune-related genes in DCs upon fungal exposure. Altogether, our results provide an initial characterization of early host responses to P. brasiliensis and a basis for better understanding the infectious process of this important neglected pathogen.
Resumo:
Sanches B.G.S., Souza F.N., Azedo M.R., Batista C.F., Bertagnon H.G., Blagitz M.G. & Della Libera A.M.M.P. 2012. [Enhanced phagocytosis of Corynebacterium pseudotuberculosis by monocyte-macrophage cells from goats naturally infected with caprine arthritis encephalitis virus.] Fagocitose intensificada de Corynebacterium pseudotuberculosis por celulas da serie monocito-macrofago de caprinos naturalmente infectados pelo virus da artrite encefalite. Pesquisa Veterinaria Brasileira 32(12):1225-1229. Departamento de Clinica Medica, Faculdade de Medicina Veterinaria e Zootecnia, Universidade de Sao Paulo, Avenida Prof. Dr. Orlando Marques de Paiva 87, Cidade Universitaria, Sao Paulo, SP 05508-270, Brazil. E-mail: camilafb@usp.br Caprine arthritis encephalitis (CAE) and caseous lymphadenitis (CL) have high incidence and transmissibility in small ruminants. Since both virus have tropism for macrophages and monocytes and affect the innate immune response, it is believed that CAE can predispose the animal to infection by Corynebacteruim pseudotuberculosis, the etiological agent of CL. To confirm this hypothesis, we evaluated phagocytosis from the monocyte-macrophage cells from 30 Saanen goats. Goats were uniformly divided in two groups according to results of agar gel immunodiffusion test for CAE virus (CAEV). Peripheral blood mononuclear cells were isolated by density gradient centrifugation and the monocyte-macrophage cells were isolated from the mononuclear cells by their adhesion properties in plaques. Afterwards, phagocytosis of C. psudotuberculosis was performed for two hours at 37 degrees C, 5% of CO2, and assessed by microscopic visualization. There was no difference in the percentage of monocyte-macrophage cells that phagocytozed C. bovis between groups (P = 0.41). However, when phagocytosis rates were classified according to the number of C. pseudotuberculosis phagocyted, the percentage of monocyte-macrophage cells that internalized more than 12 bacteria were higher in serologically CAEV positive animals compared to the serologically negative ones (P < 0.001). Furthermore, a positive and significant correlation (r = 0.488; P = 0.006) between the percentage of monocyte-macrophage cells that internalized more than 12 bacteria and the percentage of monocyte that were carrying out phagocytosis was also encountered in serologically CAEV positive goats, however the same were not observed in serologically negative ones. These results demonstrated an alteration in the intensity of C. pseudotuberculosis phagocytosis by monocytes-macrophages from goats infected by CAEV. Thus, these results indicated that goats infected with CAEV may be more susceptible to CL.
Resumo:
MHC class la-restricted CD8(+) T cells are important mediators of the adaptive immune response against infections caused by intracellular microorganisms. Whereas antigen-specific effector CD8(+) T cells can clear infection caused by intracellular pathogens, in some circumstances, the immune response is suboptimal and the microorganisms survive, causing host death or chronic infection. Here, we explored the cellular and molecular mechanisms that could explain why CD8(+) T-cell-mediated immunity during infection with the human protozoan parasite Trypanosoma cruzi is not optimal. For that purpose, we compared the CD8(+) T-cell mediated immune responses in mice infected with T. cruzi or vaccinated with a recombinant adenovirus expressing an immunodominant parasite antigen. Several functional and phenotypic characteristics of specific CD8(+) T cells overlapped. Among few exceptions was an accelerated expansion of the immune response in adenoviral vaccinated mice when compared to infected ones. Also, there was an upregulated expression of the apoptotic-signaling receptor CD95 on the surface of specific T cells from infected mice, which was not observed in the case of adenoviral-vaccinated mice. Most importantly, adenoviral vaccine provided at the time of infection significantly reduced the upregulation of CD95 expression and the proapoptotic phenotype of pathogen-specific CD8(+) cells expanded during infection. In parallel, infected adenovirus-vaccinated mice had a stronger CD8(+) T-cell mediated immune response and survived an otherwise lethal infection. We concluded that a suboptimal CD8(+) T-cell response is associated with an upregulation of CD95 expression and a proapoptotic phenotype. Both can be blocked by adenoviral vaccination.