24 resultados para Thin metal films


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The immobilization of the glucose/mannose-binding lectin from Concanavalia ensiformis seeds (ConA) onto a monolayer made of a galactomannan extracted from Leucaena leucocephala seeds (GML), which was adsorbed onto - amino-terminated surfaces, was investigated by means of ellipsometry and atomic force microscopy. The mean thickness of GML monolayer, which polysaccharide consists of linear 1 -> 4-linked beta-D-mannopyranosil units partially substituted at C-6 by alpha-D-galactopyranosyl units, amounted to (1.5 +/- 0.2) nm. ConA molecules adsorbed onto GML surfaces forming (2.0 +/- 0.5) nm thick layers. However, in the presence of mannose the adsorption failed, indicating that ConA binding sites were blocked by mannose and were no longer available for mannose units present in the GML backbone. The GML film was also used as support for the adsorption of three serotypes of dengue virus particles (DENV-1, DENV-2 and DENV-3), where DENV-2 formed the thickest film (4 +/- 2) nm. The adsorbed layer of DENV-2 onto ConA-covered GML surfaces presented mean thickness values similar to that determined for DENV-2 onto bare GML surfaces. The addition of free mannose units prevented DENV-2 adsorption onto ConA-covered GML films by similar to 50%, suggesting competition between virus and mannose for ConA binding sites. This finding suggests that if ConA is also adsorbed to GML surface and its binding site is blocked by free mannose, virus particles are able to recognized GML mannose unities substituted by galactose. interactions between polysaccharides thin films, proteins, and viruses are of great relevance since they can provide basis for the development of biotechnological devices. These results indicate that GML is a potential polysaccharide for biomaterials development, as those could involve interactions between ConA in immune system and viruses. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The evolution of the structure and properties of Cr/Cr oxide thin films deposited on HK40 steel substrates by reactive magnetron sputtering (RMS) was investigated and linked to their potential protective behavior against metal dusting. Deposition time, mode of oxygen feeding, and application of bias voltage were varied to assess their effect on the density, adhesion, and integrity of the films. All the films showed a very fine columnar microstructure and the presence of amorphous Cr oxide. Both, an increasing time and a constant oxygen flow during deposition led to the development of relatively low density films and mud-like cracking patterns. A graded oxygen flow resulted in films with fewer cracks, but a careful control of the oxygen flow is required to obtain films with a truly graded structure. The effect of the bias voltage was much more significant and beneficial. An increasing negative bias voltage resulted in the development of denser films with a transition to an almost crack-free structure and better adhesion. The amorphous oxide resulted in low values of hardness and Young's modulus. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The in situ complexation between 2,3,5,6-tetra(2-pyridyl)pyrazine (tppz) molecules and europium ions at the air-liquid interface by means of mixed 1-octadecanol Langmuir films is reported. These films were transferred to solid supports by means of the Langmuir-Blodgett (LB) technique. The EDS maps attested the homogeneity of the LB films as well as the presence of the europium ions. The mixed alcohol/tppz LB film contained a larger amount of europium ions as compared to the pure octadecanol LB film. This work reports the production of a thin luminescent Eu3+ film containing europium ions using only alcohol molecules as ligands an unexpected result, since it is well known that there is an occurrence of non-radiative deactivation of excited europium by hydroxyl groups. Europium ion multiple binding sites were detected from lifetime decay measurements of these films in the presence of tppz molecules. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Transparent nanostructure ZnO:CeO2 and ZnO thin films to use as solar protector were prepared by non-alkoxide sol-gel process and deposited on boronsilicate glass substrate by dip-coating technique and then heated at 300-500 degrees C. The films were characterized structurally, morphologically and optically by X-ray diffraction (XRD), atomic force microscopy (AFM), field emission gun-scanning electron microscopy (FEG-SEM), scanning electron microscopy (SEM) and UV-Vis transmittance spectroscopy. The coatings presented high transparency in the visible region and excellent absorption in the UV. The band gap of the deposited films was estimated between 3.10 and 3.18 eV. Absorption of the films in the UV was increased by presence of cerium. The results suggest that the materials are promising candidates to use as coating solar protective. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

MgTiO3 (MTO) thin films were prepared by the polymeric precursor method with posterior spin-coating deposition. The films were deposited on Pt(111)/Ti/SiO2/Si(100) substrates and heat treated at 350 degrees C for 2 h and then heat treated at 400, 450, 500, 550, 600, 650 and 700 C for 2 h. The degree of structural order disorder, optical properties, and morphology of the MTO thin films were investigated by X-ray diffraction (XRD), micro-Raman spectroscopy (MR), ultraviolet-visible (UV-vis) absorption spectroscopy, photoluminescence (PL) measurements, and field-emission gun scanning electron microscopy (FEG-SEM) to investigate the morphology. XRD revealed that an increase in the annealing temperature resulted in a structural organization of MTO thin films. First-principles quantum mechanical calculations based on density functional theory (B3LYP level) were employed to study the electronic structure of ordered and disordered asymmetric models. The electronic properties were analyzed, and the relevance of the present theoretical and experimental results was discussed in the light of PL behavior. The presence of localized electronic levels and a charge gradient in the band gap due to a break in the symmetry are responsible for the PL in disordered MTO lattice.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Reactive Sputter Magnetron (RSM) is a widely used technique to thin films growing of compounds both, in research laboratories and in industrial processes. The nature of the deposited compound will depend then on the nature of the magnetron target and the nature of the ions generated in the plasma. One important aspect of the problem is the knowledge of the evolution of the film during the process of growing itself. In this work, we present the design, construction of a chamber to be installed in the Huber goniometer in the XRD2 line of LNLS in Campinas, which allows in situ growing kinetic studies of thin films.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Hadron therapy is a promising technique to treat deep-seated tumors. For an accurate treatment planning, the energy deposition in the soft and hard human tissue must be well known. Water has been usually employed as a phantom of soft tissues, but other biomaterials, such as hydroxyapatite (HAp), used as bone substitute, are also relevant as a phantom for hard tissues. The stopping power of HAp for H+ and He+ beams has been studied experimentally and theoretically. The measurements have been done using the Rutherford backscattering technique in an energy range of 450-2000 keV for H+ and of 400-5000 keV for He+ projectiles. The theoretical calculations are based in the dielectric formulation together with the MELF-GOS (Mermin Energy-Loss Function – Generalized Oscillator Strengths) method [1] to describe the target excitation spectrum. A quite good agreement between the experimental data and the theoretical results has been found. The depth dose profile of H+ and He+ ion beams in HAp has been simulated by the SEICS (Simulation of Energetic Ions and Clusters through Solids) code [2], which incorporates the electronic stopping force due to the energy loss by collisions with the target electrons, including fluctuations due to the energy-loss straggling, the multiple elastic scattering with the target nuclei, with their corresponding nuclear energy loss, and the dynamical charge-exchange processes in the projectile charge state. The energy deposition by H+ and He+ as a function of the depth are compared, at several projectile energies, for HAp and liquid water, showing important differences.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

CaSnO3 and SrSnO3 alkaline earth stannate thin films were prepared by chemical solution deposition using the polymeric precursor method on various single crystal substrates (R- and C-sapphire and 100-SrTiO3) at different temperatures. The films were characterized by X-ray diffraction (θ-2θ, ω- and φ-scans), field emission scanning electron microscopy, atomic force microscopy, micro-Raman spectroscopy and photoluminescence. Epitaxial SrSnO3 and CaSnO3 thin films were obtained on SrTiO3 with a high crystalline quality. The long-range symmetry promoted a short-range disorder which led to photoluminescence in the epitaxial films. In contrast, the films deposited on sapphire exhibited a random polycrystalline growth with no meaningful emission regardless of the substrate orientation. The network modifier (Ca or Sr) and the substrate (sapphire or SrTiO3) influenced the crystallization process and/or the microstructure. Higher is the tilts of the SnO6 octahedra, as in CaSnO3, higher is the crystallization temperature, which changed also the nucleation/grain growth process.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The effect of terbium (Tb) doping on the photoluminescence (PL) of crystalline aluminum nitride (c-AlN) and amorphous hydrogenated silicon carbide (a-SiC:H) thin films has been investigated for different Tb atomic concentrations. The samples were prepared by DC and RF magnetron reactive sputtering techniques covering the concentration range of Tb from 0.5 to 11 at.%. The Tb-related light emission versus the Tb concentration is reported for annealing temperatures of 450 °C, 750 °C and 1000 °C. In the low concentration region the intensity exhibits a linear increase and its slope is enhanced with the annealing temperature giving an activation energy of 0.106 eV in an Arrhenius plot. In the high concentration region an exponential decay is recorded which is almost independent on the host material, its structure and the annealing process.